Cargando…

Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite

The aim of the research article is to develop a representative volume element using finite elements to study the buckling stability of graphene/polymer nanocomposites. Research work exploring the full potential of graphene as filler for nanocomposites is limited in part due to the complex processes...

Descripción completa

Detalles Bibliográficos
Autores principales: Parashar, Avinash, Mertiny, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561215/
https://www.ncbi.nlm.nih.gov/pubmed/22994951
http://dx.doi.org/10.1186/1556-276X-7-515
Descripción
Sumario:The aim of the research article is to develop a representative volume element using finite elements to study the buckling stability of graphene/polymer nanocomposites. Research work exploring the full potential of graphene as filler for nanocomposites is limited in part due to the complex processes associated with the mixing of graphene in polymer. To overcome some of these issues, a multiscale modeling technique has been proposed in this numerical work. Graphene was herein modeled in the atomistic scale, whereas the polymer deformation was analyzed as a continuum. Separate representative volume element models were developed for investigating buckling in neat polymer and graphene/polymer nanocomposites. Significant improvements in buckling strength were observed under applied compressive loading when compared with the buckling stability of neat polymer.