Cargando…

microRNA-9 Suppresses the Proliferation, Invasion and Metastasis of Gastric Cancer Cells through Targeting Cyclin D1 and Ets1

Recent evidence shows that altered microRNA-9 (miR-9) expression is implicated in the progression of gastric cancer. However, the exact roles and underlying mechanisms of miR-9 in the proliferation, invasion and metastasis of gastric cancer still remain unknown. In this study, miR-9 was found to be...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Liduan, Qi, Teng, Yang, Dehua, Qi, Meng, Li, Dan, Xiang, Xuan, Huang, Kai, Tong, Qiangsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561302/
https://www.ncbi.nlm.nih.gov/pubmed/23383271
http://dx.doi.org/10.1371/journal.pone.0055719
Descripción
Sumario:Recent evidence shows that altered microRNA-9 (miR-9) expression is implicated in the progression of gastric cancer. However, the exact roles and underlying mechanisms of miR-9 in the proliferation, invasion and metastasis of gastric cancer still remain unknown. In this study, miR-9 was found to be down-regulated and inversely correlated with the expression of cyclin D1 and v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets1) in gastric cancer tissues and cell lines. Bioinformatics analysis revealed the putative miR-9 binding sites in the 3′-untranslated regions (3′-UTR) of cyclin D1 and Ets1 mRNA. Ectopic expression or knockdown of miR-9 resulted in responsively altered expression of cyclin D1, Ets1 and their downstream targets phosphorylated retinoblastoma and matrix metalloproteinase 9 in cultured gastric cancer cell lines SGC-7901 and AGS. In the luciferase reporter system, miR-9 directly targeted the 3′-UTR of cyclin D1 and Ets1, and these effects were abolished by mutating the miR-9 binding sites. Over-expression of miR-9 suppressed the proliferation, invasion, and metastasis of SGC-7901 and AGS cells in vitro and in vivo. Restoration of miR-9-mediated down-regulation of cyclin D1 and Ets1 by transient transfection, rescued the cancer cells from decrease in proliferation, migration and invasion. Furthermore, anti-miR-9 inhibitor promoted the proliferation, migration and invasion of gastric cancer cells, while knocking down of cyclin D1 or Ets1 partially phenocopied the effects of miR-9 over-expression. These data indicate that miR-9 suppresses the expression of cyclin D1 and Ets1 via the binding sites in their 3′-UTR, thus inhibiting the proliferation, invasion and metastasis of gastric cancer.