Cargando…
Forward Genetic Screening for the Improved Production of Fermentable Sugars from Plant Biomass
With their unique metabolism and the potential to produce large amounts of biomass, plants are an excellent bio-energy feedstock for a variety of industrial purposes. Here we developed a high-throughput strategy, using the model plant Arabidopsis thaliana, to identify mutants with improved sugar rel...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561329/ https://www.ncbi.nlm.nih.gov/pubmed/23383246 http://dx.doi.org/10.1371/journal.pone.0055616 |
Sumario: | With their unique metabolism and the potential to produce large amounts of biomass, plants are an excellent bio-energy feedstock for a variety of industrial purposes. Here we developed a high-throughput strategy, using the model plant Arabidopsis thaliana, to identify mutants with improved sugar release from plant biomass. Molecular analysis indicates a variety of processes including starch degradation, cell wall composition and polar transport of the plant hormone auxin can contribute to this improved saccharification. To demonstrate translatability, polar auxin transport in maize was either genetically or chemical inhibited and this also resulted in increased sugar release from plant tissues. Our forward genetic approach using Arabidopsis not only uncovers new functions that contribute to cell wall integrity but also demonstrates that information gleaned from this genetic model can be directly translated to monocotyledonous crops such as maize to improve sugar extractability from biomass. |
---|