Cargando…

Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats

Brown Norway rats (BN, BN/NHsdMcwi) are profoundly resistant to developing acute kidney injury (AKI) following ischemia reperfusion. To help define the genetic basis for this resistance, we used consomic rats, in which individual chromosomes from BN rats were placed into the genetic background of Da...

Descripción completa

Detalles Bibliográficos
Autores principales: Basile, David P., Dwinell, Melinda R., Wang, Shur-Jen, Shames, Brian D., Donohoe, Deborah, Chen, Shaoying, Sreedharan, Rajasree, Van Why, Scott K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561482/
https://www.ncbi.nlm.nih.gov/pubmed/23235564
http://dx.doi.org/10.1038/ki.2012.391
Descripción
Sumario:Brown Norway rats (BN, BN/NHsdMcwi) are profoundly resistant to developing acute kidney injury (AKI) following ischemia reperfusion. To help define the genetic basis for this resistance, we used consomic rats, in which individual chromosomes from BN rats were placed into the genetic background of Dahl SS rats (SS, SS/JrHsdMcwi) to determine which chromosomes contain alleles contributing to protection from AKI. The parental strains had dramatically different sensitivity to ischemia reperfusion with plasma creatinine levels following 45 minutes of ischemia and 24 hours reperfusion of 4.1 and 1.3 mg/dl in SS and in BN, respectively. No consomic strain showed protection similar to the parental BN strain. Nine consomic strains (SS-7BN, SS-XBN, SS-8BN, SS-4BN, SS-15BN, SS-3BN, SS-10BN, SS-6BN, and SS-5BN) showed partial protection (plasma creatinine about 2.5-3.0 mg/dl), suggesting that multiple alleles contribute to the severity of AKI. In silico analysis was performed using disease ontology database terms and renal function quantitative trait loci from the rat genome database on the BN chromosomes giving partial protection from AKI. This tactic identified at least 36 candidate genes, with several previously linked to the pathophysiology of AKI. Thus, natural variants of these alleles or yet to be identified alleles on these chromosomes provide protection against AKI. These alleles may be potential modulators of AKI in susceptible patient populations.