Cargando…

Modeling and analysis of flux distributions in the two branches of the phosphotransferase system in Pseudomonas putida

BACKGROUND: Signal transduction plays a fundamental role in the understanding of cellular physiology. The bacterial phosphotransferase system (PTS) together with the PEP/pyruvate node in central metabolism represents a signaling unit that acts as a sensory element and measures the activity of the ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Kremling, Andreas, Pflüger-Grau, Katharina, Chavarría, Max, Puchalka, Jacek, dos Santos, Vitor Martins, Lorenzo, Víctor de
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562155/
https://www.ncbi.nlm.nih.gov/pubmed/23216700
http://dx.doi.org/10.1186/1752-0509-6-149
Descripción
Sumario:BACKGROUND: Signal transduction plays a fundamental role in the understanding of cellular physiology. The bacterial phosphotransferase system (PTS) together with the PEP/pyruvate node in central metabolism represents a signaling unit that acts as a sensory element and measures the activity of the central metabolism. Pseudomonas putida possesses two PTS branches, the C-branch (PTS(Fru)) and a second branch (PTS(Ntr)), which communicate with each other by phosphate exchange. Recent experimental results showed a cross talk between the two branches. However, the functional role of the crosstalk remains open. RESULTS: A mathematical model was set up to describe the available data of the state of phosphorylation of PtsN, one of the PTS proteins, for different environmental conditions and different strain variants. Additionally, data from flux balance analysis was used to determine some of the kinetic parameters of the involved reactions. Based on the calculated and estimated parameters, the flux distribution during growth of the wild type strain on fructose could be determined. CONCLUSION: Our calculations show that during growth of the wild type strain on the PTS substrate fructose, the major part of the phosphoryl groups is provided by the second branch of the PTS. This theoretical finding indicates a new role of the second branch of the PTS and will serve as a basis for further experimental studies.