Cargando…

Rapid Diagnosis of Drug Resistance to Fluoroquinolones, Amikacin, Capreomycin, Kanamycin and Ethambutol Using Genotype MTBDRsl Assay: A Meta-Analysis

BACKGROUND: There are urgent needs for rapid and accurate drug susceptibility testing of M. tuberculosis. GenoType MTBDRsl is a new molecular kit designed for rapid identification of the resistance to the second-line antituberculosis drugs with a single strip. In recent years, it has been evaluated...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Yan, Liu, Sijun, Wang, Qungang, Wang, Liang, Tang, Shaowen, Wang, Jianming, Lu, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562191/
https://www.ncbi.nlm.nih.gov/pubmed/23383320
http://dx.doi.org/10.1371/journal.pone.0055292
Descripción
Sumario:BACKGROUND: There are urgent needs for rapid and accurate drug susceptibility testing of M. tuberculosis. GenoType MTBDRsl is a new molecular kit designed for rapid identification of the resistance to the second-line antituberculosis drugs with a single strip. In recent years, it has been evaluated in many settings, but with varied results. The aim of this meta-analysis was to synthesize the latest data on the diagnostic accuracy of GenoType MTBDRsl in detecting drug resistance to fluoroquinolones, amikacin, capreomycin, kanamycin and ethambutol, in comparison with the phenotypic drug susceptibility test. METHODS: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. The search terms of “MTBDRsl” and “tuberculosis” were used on PubMed, EMBASE, and Web of Science. QUADAS-2 was used to assess the quality of included studies. Data were analyzed by Meta-Disc 1.4. We calculated the sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and corresponding 95% confidence interval (CI) for each study. From these calculations, forest plots and summary receiver operating characteristic (SROC) curves were produced. RESULTS: Patient selection bias as well as flow and timing bias were observed in most studies. The summarized sensitivity (95% CI) was 0.874(0.845–0.899), 0.826(0.777–0.869), 0.820(0.772–0.862), 0.444(0.396–0.492), and 0.679(0.652–0.706) for fluoroquinolones, amikacin, capreomycin, kanamycin, and ethambutol, respectively. The specificity (95% CI) was 0.971(0.961–0.980), 0.995(0.987–0.998), 0.973(0.963–0.981), 0.993(0.985–0.997), and 0.799(0.773–0.823), respectively. The AUC (standard error) were 0.9754(0.0203), 0.9300(0.0598), 0.9885(0.0038), 0.9689(0.0359), and 0.6846(0.0550), respectively. CONCLUSION: Genotype MTBDRsl showed good accuracy for detecting drug resistance to fluoroquinolones, amikacin and capreomycin, but it may not be an appropriate choice for kanamycin and ethambutol. The lack of data did not allow for proper evaluation of the test on clinical specimens. Further systematic assessment of diagnostic performance should be carried out on direct clinical samples.