Cargando…
Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of in...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562456/ https://www.ncbi.nlm.nih.gov/pubmed/23340418 http://dx.doi.org/10.1038/ncomms2386 |
_version_ | 1782258088670134272 |
---|---|
author | Lei, Na Devolder, Thibaut Agnus, Guillaume Aubert, Pascal Daniel, Laurent Kim, Joo-Von Zhao, Weisheng Trypiniotis, Theodossis Cowburn, Russell P. Chappert, Claude Ravelosona, Dafiné Lecoeur, Philippe |
author_facet | Lei, Na Devolder, Thibaut Agnus, Guillaume Aubert, Pascal Daniel, Laurent Kim, Joo-Von Zhao, Weisheng Trypiniotis, Theodossis Cowburn, Russell P. Chappert, Claude Ravelosona, Dafiné Lecoeur, Philippe |
author_sort | Lei, Na |
collection | PubMed |
description | The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices. |
format | Online Article Text |
id | pubmed-3562456 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-35624562013-02-04 Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures Lei, Na Devolder, Thibaut Agnus, Guillaume Aubert, Pascal Daniel, Laurent Kim, Joo-Von Zhao, Weisheng Trypiniotis, Theodossis Cowburn, Russell P. Chappert, Claude Ravelosona, Dafiné Lecoeur, Philippe Nat Commun Article The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices. Nature Pub. Group 2013-01-22 /pmc/articles/PMC3562456/ /pubmed/23340418 http://dx.doi.org/10.1038/ncomms2386 Text en Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Lei, Na Devolder, Thibaut Agnus, Guillaume Aubert, Pascal Daniel, Laurent Kim, Joo-Von Zhao, Weisheng Trypiniotis, Theodossis Cowburn, Russell P. Chappert, Claude Ravelosona, Dafiné Lecoeur, Philippe Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures |
title | Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures |
title_full | Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures |
title_fullStr | Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures |
title_full_unstemmed | Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures |
title_short | Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures |
title_sort | strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562456/ https://www.ncbi.nlm.nih.gov/pubmed/23340418 http://dx.doi.org/10.1038/ncomms2386 |
work_keys_str_mv | AT leina straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT devolderthibaut straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT agnusguillaume straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT aubertpascal straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT daniellaurent straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT kimjoovon straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT zhaoweisheng straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT trypiniotistheodossis straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT cowburnrussellp straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT chappertclaude straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT ravelosonadafine straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures AT lecoeurphilippe straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures |