Cargando…

Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures

The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of in...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Na, Devolder, Thibaut, Agnus, Guillaume, Aubert, Pascal, Daniel, Laurent, Kim, Joo-Von, Zhao, Weisheng, Trypiniotis, Theodossis, Cowburn, Russell P., Chappert, Claude, Ravelosona, Dafiné, Lecoeur, Philippe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562456/
https://www.ncbi.nlm.nih.gov/pubmed/23340418
http://dx.doi.org/10.1038/ncomms2386
_version_ 1782258088670134272
author Lei, Na
Devolder, Thibaut
Agnus, Guillaume
Aubert, Pascal
Daniel, Laurent
Kim, Joo-Von
Zhao, Weisheng
Trypiniotis, Theodossis
Cowburn, Russell P.
Chappert, Claude
Ravelosona, Dafiné
Lecoeur, Philippe
author_facet Lei, Na
Devolder, Thibaut
Agnus, Guillaume
Aubert, Pascal
Daniel, Laurent
Kim, Joo-Von
Zhao, Weisheng
Trypiniotis, Theodossis
Cowburn, Russell P.
Chappert, Claude
Ravelosona, Dafiné
Lecoeur, Philippe
author_sort Lei, Na
collection PubMed
description The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.
format Online
Article
Text
id pubmed-3562456
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-35624562013-02-04 Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures Lei, Na Devolder, Thibaut Agnus, Guillaume Aubert, Pascal Daniel, Laurent Kim, Joo-Von Zhao, Weisheng Trypiniotis, Theodossis Cowburn, Russell P. Chappert, Claude Ravelosona, Dafiné Lecoeur, Philippe Nat Commun Article The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices. Nature Pub. Group 2013-01-22 /pmc/articles/PMC3562456/ /pubmed/23340418 http://dx.doi.org/10.1038/ncomms2386 Text en Copyright © 2013, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Lei, Na
Devolder, Thibaut
Agnus, Guillaume
Aubert, Pascal
Daniel, Laurent
Kim, Joo-Von
Zhao, Weisheng
Trypiniotis, Theodossis
Cowburn, Russell P.
Chappert, Claude
Ravelosona, Dafiné
Lecoeur, Philippe
Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
title Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
title_full Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
title_fullStr Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
title_full_unstemmed Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
title_short Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
title_sort strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3562456/
https://www.ncbi.nlm.nih.gov/pubmed/23340418
http://dx.doi.org/10.1038/ncomms2386
work_keys_str_mv AT leina straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT devolderthibaut straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT agnusguillaume straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT aubertpascal straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT daniellaurent straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT kimjoovon straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT zhaoweisheng straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT trypiniotistheodossis straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT cowburnrussellp straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT chappertclaude straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT ravelosonadafine straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures
AT lecoeurphilippe straincontrolledmagneticdomainwallpropagationinhybridpiezoelectricferromagneticstructures