Cargando…
Effects of confinement and electron transport on magnetic switching in single Co nanoparticles
This work reports the first study of current-driven magnetization noise in a single, nanometerscale, ferromagnetic (Co) particle, attached to normal metal leads by high-resistance tunneling junctions. As the tunnel current increases at low temperature, the magnetic switching field decreases, its pro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563040/ https://www.ncbi.nlm.nih.gov/pubmed/23383370 http://dx.doi.org/10.1038/srep01200 |
Sumario: | This work reports the first study of current-driven magnetization noise in a single, nanometerscale, ferromagnetic (Co) particle, attached to normal metal leads by high-resistance tunneling junctions. As the tunnel current increases at low temperature, the magnetic switching field decreases, its probability distribution widens, while the temperature of the environment remains nearly constant. These observations demonstrate nonequilibrium magnetization noise. A classical model of the noise is provided, where the spin-orbit interaction plays a central role in driving magnetic tunneling transitions. |
---|