Cargando…
Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI)
BACKGROUND: Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563538/ https://www.ncbi.nlm.nih.gov/pubmed/23363052 http://dx.doi.org/10.1186/1467-4866-14-1 |
_version_ | 1782258207288197120 |
---|---|
author | Stoliker, Deborah L Kaviani, Nazila Kent, Douglas B Davis, James A |
author_facet | Stoliker, Deborah L Kaviani, Nazila Kent, Douglas B Davis, James A |
author_sort | Stoliker, Deborah L |
collection | PubMed |
description | BACKGROUND: Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating, recovering, and preserving both redox states during separation. RESULTS: Under oxic conditions, recovery of U(VI) from three exchange resins (Bio-Rad AG® 1x8 Poly-Prep® prefilled columns, Bio-Rad AG® 1x8 powder, and Dowex® 1x8 powder) ranged from 72% to 100% depending on the dosed mass, eluent volume, and resin selected. Dowex® 1x8 resin was the only resin found to provide 100% recovery of U(VI) with fewer than 5 bed volumes of eluent. Under anoxic conditions, all three resins oxidized U(IV) in aqueous solutions with relatively low U(IV) concentrations (<3x10(-6) M). Resin-induced oxidation was observed visually using a leuco dye, safranin-o. Oxidants associated with the resin were irreversibly reduced by the addition of Ti(III). After anoxic resin pre-treatment, a series of U(IV)/U(VI) mixtures at micro-molar levels were prepared and separated using the Dowex® 1x8 resin with 100% recovery of both U(IV) and U(VI) with no resin-induced changes in oxidation state. CONCLUSIONS: Currently available anion exchange resins with apparently identical physical properties were found to have significantly different recoveries for hexavalent uranium at micro-molar concentrations. A novel qualitative technique was developed to visually assess oxidative capacities of anion exchange resins under acidic anoxic conditions. A protocol was developed for pre-treatment and use of currently available anion exchange resins to achieve quantitative separation of U(IV) and U(VI) in aqueous solutions with low U(IV) concentrations. This method can be applied to future work to quantitatively assess dissolved U(IV) and U(VI) concentrations in both laboratory and field samples. |
format | Online Article Text |
id | pubmed-3563538 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35635382013-02-08 Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI) Stoliker, Deborah L Kaviani, Nazila Kent, Douglas B Davis, James A Geochem Trans Methodology BACKGROUND: Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating, recovering, and preserving both redox states during separation. RESULTS: Under oxic conditions, recovery of U(VI) from three exchange resins (Bio-Rad AG® 1x8 Poly-Prep® prefilled columns, Bio-Rad AG® 1x8 powder, and Dowex® 1x8 powder) ranged from 72% to 100% depending on the dosed mass, eluent volume, and resin selected. Dowex® 1x8 resin was the only resin found to provide 100% recovery of U(VI) with fewer than 5 bed volumes of eluent. Under anoxic conditions, all three resins oxidized U(IV) in aqueous solutions with relatively low U(IV) concentrations (<3x10(-6) M). Resin-induced oxidation was observed visually using a leuco dye, safranin-o. Oxidants associated with the resin were irreversibly reduced by the addition of Ti(III). After anoxic resin pre-treatment, a series of U(IV)/U(VI) mixtures at micro-molar levels were prepared and separated using the Dowex® 1x8 resin with 100% recovery of both U(IV) and U(VI) with no resin-induced changes in oxidation state. CONCLUSIONS: Currently available anion exchange resins with apparently identical physical properties were found to have significantly different recoveries for hexavalent uranium at micro-molar concentrations. A novel qualitative technique was developed to visually assess oxidative capacities of anion exchange resins under acidic anoxic conditions. A protocol was developed for pre-treatment and use of currently available anion exchange resins to achieve quantitative separation of U(IV) and U(VI) in aqueous solutions with low U(IV) concentrations. This method can be applied to future work to quantitatively assess dissolved U(IV) and U(VI) concentrations in both laboratory and field samples. BioMed Central 2013-01-31 /pmc/articles/PMC3563538/ /pubmed/23363052 http://dx.doi.org/10.1186/1467-4866-14-1 Text en Copyright ©2013 Stoliker et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Stoliker, Deborah L Kaviani, Nazila Kent, Douglas B Davis, James A Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI) |
title | Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI) |
title_full | Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI) |
title_fullStr | Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI) |
title_full_unstemmed | Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI) |
title_short | Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI) |
title_sort | evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(iv) and uranium(vi) |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3563538/ https://www.ncbi.nlm.nih.gov/pubmed/23363052 http://dx.doi.org/10.1186/1467-4866-14-1 |
work_keys_str_mv | AT stolikerdeborahl evaluatingionexchangeresinefficiencyandoxidativecapacityfortheseparationofuraniumivanduraniumvi AT kavianinazila evaluatingionexchangeresinefficiencyandoxidativecapacityfortheseparationofuraniumivanduraniumvi AT kentdouglasb evaluatingionexchangeresinefficiencyandoxidativecapacityfortheseparationofuraniumivanduraniumvi AT davisjamesa evaluatingionexchangeresinefficiencyandoxidativecapacityfortheseparationofuraniumivanduraniumvi |