Cargando…

An in vivo control map for the eukaryotic mRNA translation machinery

Rate control analysis defines the in vivo control map governing yeast protein synthesis and generates an extensively parameterized digital model of the translation pathway. Among other non-intuitive outcomes, translation demonstrates a high degree of functional modularity and comprises a non-stoichi...

Descripción completa

Detalles Bibliográficos
Autores principales: Firczuk, Helena, Kannambath, Shichina, Pahle, Jürgen, Claydon, Amy, Beynon, Robert, Duncan, John, Westerhoff, Hans, Mendes, Pedro, McCarthy, John EG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Molecular Biology Organization 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564266/
https://www.ncbi.nlm.nih.gov/pubmed/23340841
http://dx.doi.org/10.1038/msb.2012.73
_version_ 1782258305201078272
author Firczuk, Helena
Kannambath, Shichina
Pahle, Jürgen
Claydon, Amy
Beynon, Robert
Duncan, John
Westerhoff, Hans
Mendes, Pedro
McCarthy, John EG
author_facet Firczuk, Helena
Kannambath, Shichina
Pahle, Jürgen
Claydon, Amy
Beynon, Robert
Duncan, John
Westerhoff, Hans
Mendes, Pedro
McCarthy, John EG
author_sort Firczuk, Helena
collection PubMed
description Rate control analysis defines the in vivo control map governing yeast protein synthesis and generates an extensively parameterized digital model of the translation pathway. Among other non-intuitive outcomes, translation demonstrates a high degree of functional modularity and comprises a non-stoichiometric combination of proteins manifesting functional convergence on a shared maximal translation rate. In exponentially growing cells, polypeptide elongation (eEF1A, eEF2, and eEF3) exerts the strongest control. The two other strong control points are recruitment of mRNA and tRNA(i) to the 40S ribosomal subunit (eIF4F and eIF2) and termination (eRF1; Dbp5). In contrast, factors that are found to promote mRNA scanning efficiency on a longer than-average 5′untranslated region (eIF1, eIF1A, Ded1, eIF2B, eIF3, and eIF5) exceed the levels required for maximal control. This is expected to allow the cell to minimize scanning transition times, particularly for longer 5′UTRs. The analysis reveals these and other collective adaptations of control shared across the factors, as well as features that reflect functional modularity and system robustness. Remarkably, gene duplication is implicated in the fine control of cellular protein synthesis.
format Online
Article
Text
id pubmed-3564266
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher European Molecular Biology Organization
record_format MEDLINE/PubMed
spelling pubmed-35642662013-02-05 An in vivo control map for the eukaryotic mRNA translation machinery Firczuk, Helena Kannambath, Shichina Pahle, Jürgen Claydon, Amy Beynon, Robert Duncan, John Westerhoff, Hans Mendes, Pedro McCarthy, John EG Mol Syst Biol Article Rate control analysis defines the in vivo control map governing yeast protein synthesis and generates an extensively parameterized digital model of the translation pathway. Among other non-intuitive outcomes, translation demonstrates a high degree of functional modularity and comprises a non-stoichiometric combination of proteins manifesting functional convergence on a shared maximal translation rate. In exponentially growing cells, polypeptide elongation (eEF1A, eEF2, and eEF3) exerts the strongest control. The two other strong control points are recruitment of mRNA and tRNA(i) to the 40S ribosomal subunit (eIF4F and eIF2) and termination (eRF1; Dbp5). In contrast, factors that are found to promote mRNA scanning efficiency on a longer than-average 5′untranslated region (eIF1, eIF1A, Ded1, eIF2B, eIF3, and eIF5) exceed the levels required for maximal control. This is expected to allow the cell to minimize scanning transition times, particularly for longer 5′UTRs. The analysis reveals these and other collective adaptations of control shared across the factors, as well as features that reflect functional modularity and system robustness. Remarkably, gene duplication is implicated in the fine control of cellular protein synthesis. European Molecular Biology Organization 2013-01-22 /pmc/articles/PMC3564266/ /pubmed/23340841 http://dx.doi.org/10.1038/msb.2012.73 Text en Copyright © 2013, EMBO and Macmillan Publishers Limited https://creativecommons.org/licenses/by-nc-nd/3.0/This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial No Derivative Works 3.0 Unported License, which permits distribution and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation or the creation of derivative works without specific permission.
spellingShingle Article
Firczuk, Helena
Kannambath, Shichina
Pahle, Jürgen
Claydon, Amy
Beynon, Robert
Duncan, John
Westerhoff, Hans
Mendes, Pedro
McCarthy, John EG
An in vivo control map for the eukaryotic mRNA translation machinery
title An in vivo control map for the eukaryotic mRNA translation machinery
title_full An in vivo control map for the eukaryotic mRNA translation machinery
title_fullStr An in vivo control map for the eukaryotic mRNA translation machinery
title_full_unstemmed An in vivo control map for the eukaryotic mRNA translation machinery
title_short An in vivo control map for the eukaryotic mRNA translation machinery
title_sort in vivo control map for the eukaryotic mrna translation machinery
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564266/
https://www.ncbi.nlm.nih.gov/pubmed/23340841
http://dx.doi.org/10.1038/msb.2012.73
work_keys_str_mv AT firczukhelena aninvivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT kannambathshichina aninvivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT pahlejurgen aninvivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT claydonamy aninvivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT beynonrobert aninvivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT duncanjohn aninvivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT westerhoffhans aninvivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT mendespedro aninvivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT mccarthyjohneg aninvivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT firczukhelena invivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT kannambathshichina invivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT pahlejurgen invivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT claydonamy invivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT beynonrobert invivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT duncanjohn invivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT westerhoffhans invivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT mendespedro invivocontrolmapfortheeukaryoticmrnatranslationmachinery
AT mccarthyjohneg invivocontrolmapfortheeukaryoticmrnatranslationmachinery