Cargando…
The Brain Renin-Angiotensin System and Mitochondrial Function: Influence on Blood Pressure and Baroreflex in Transgenic Rat Strains
Mitochondrial dysfunction is implicated in many cardiovascular diseases, including hypertension, and may be associated with an overactive renin-angiotensin system (RAS). Angiotensin (Ang) II, a potent vasoconstrictor hormone of the RAS, also impairs baroreflex and mitochondrial function. Most delete...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564433/ https://www.ncbi.nlm.nih.gov/pubmed/23401750 http://dx.doi.org/10.1155/2013/136028 |
Sumario: | Mitochondrial dysfunction is implicated in many cardiovascular diseases, including hypertension, and may be associated with an overactive renin-angiotensin system (RAS). Angiotensin (Ang) II, a potent vasoconstrictor hormone of the RAS, also impairs baroreflex and mitochondrial function. Most deleterious cardiovascular actions of Ang II are thought to be mediated by NADPH-oxidase- (NOX-) derived reactive oxygen species (ROS) that may also stimulate mitochondrial oxidant release and alter redox-sensitive signaling pathways in the brain. Within the RAS, the actions of Ang II are counterbalanced by Ang-(1–7), a vasodilatory peptide known to mitigate against increased oxidant stress. A balance between Ang II and Ang-(1–7) within the brain dorsal medulla contributes to maintenance of normal blood pressure and proper functioning of the arterial baroreceptor reflex for control of heart rate. We propose that Ang-(1–7) may negatively regulate the redox signaling pathways activated by Ang II to maintain normal blood pressure, baroreflex, and mitochondrial function through attenuating ROS (NOX-generated and/or mitochondrial). |
---|