Cargando…
A genome-wide transcriptional analysis of morphology determination in Candida albicans
Candida albicans, the most common cause of human fungal infections, undergoes a reversible morphological transition from yeast to pseudohyphal and hyphal filaments, which is required for virulence. For many years, the relationship among global gene expression patterns associated with determination o...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564527/ https://www.ncbi.nlm.nih.gov/pubmed/23242994 http://dx.doi.org/10.1091/mbc.E12-01-0065 |
_version_ | 1782258322305449984 |
---|---|
author | Carlisle, Patricia L. Kadosh, David |
author_facet | Carlisle, Patricia L. Kadosh, David |
author_sort | Carlisle, Patricia L. |
collection | PubMed |
description | Candida albicans, the most common cause of human fungal infections, undergoes a reversible morphological transition from yeast to pseudohyphal and hyphal filaments, which is required for virulence. For many years, the relationship among global gene expression patterns associated with determination of specific C. albicans morphologies has remained obscure. Using a strain that can be genetically manipulated to sequentially transition from yeast to pseudohyphae to hyphae in the absence of complex environmental cues and upstream signaling pathways, we demonstrate by whole-genome transcriptional profiling that genes associated with pseudohyphae represent a subset of those associated with hyphae and are generally expressed at lower levels. Our results also strongly suggest that in addition to dosage, extended duration of filament-specific gene expression is sufficient to drive the C. albicans yeast-pseudohyphal-hyphal transition. Finally, we describe the first transcriptional profile of the C. albicans reverse hyphal-pseudohyphal-yeast transition and demonstrate that this transition involves not only down-regulation of known hyphal-specific, genes but also differential expression of additional genes that have not previously been associated with the forward transition, including many involved in protein synthesis. These findings provide new insight into genome-wide expression patterns important for determining fungal morphology and suggest that in addition to similarities, there are also fundamental differences in global gene expression as pathogenic filamentous fungi undergo forward and reverse morphological transitions. |
format | Online Article Text |
id | pubmed-3564527 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-35645272013-04-16 A genome-wide transcriptional analysis of morphology determination in Candida albicans Carlisle, Patricia L. Kadosh, David Mol Biol Cell Articles Candida albicans, the most common cause of human fungal infections, undergoes a reversible morphological transition from yeast to pseudohyphal and hyphal filaments, which is required for virulence. For many years, the relationship among global gene expression patterns associated with determination of specific C. albicans morphologies has remained obscure. Using a strain that can be genetically manipulated to sequentially transition from yeast to pseudohyphae to hyphae in the absence of complex environmental cues and upstream signaling pathways, we demonstrate by whole-genome transcriptional profiling that genes associated with pseudohyphae represent a subset of those associated with hyphae and are generally expressed at lower levels. Our results also strongly suggest that in addition to dosage, extended duration of filament-specific gene expression is sufficient to drive the C. albicans yeast-pseudohyphal-hyphal transition. Finally, we describe the first transcriptional profile of the C. albicans reverse hyphal-pseudohyphal-yeast transition and demonstrate that this transition involves not only down-regulation of known hyphal-specific, genes but also differential expression of additional genes that have not previously been associated with the forward transition, including many involved in protein synthesis. These findings provide new insight into genome-wide expression patterns important for determining fungal morphology and suggest that in addition to similarities, there are also fundamental differences in global gene expression as pathogenic filamentous fungi undergo forward and reverse morphological transitions. The American Society for Cell Biology 2013-02-01 /pmc/articles/PMC3564527/ /pubmed/23242994 http://dx.doi.org/10.1091/mbc.E12-01-0065 Text en © 2013 Carlisle and Kadosh. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology. |
spellingShingle | Articles Carlisle, Patricia L. Kadosh, David A genome-wide transcriptional analysis of morphology determination in Candida albicans |
title | A genome-wide transcriptional analysis of morphology determination in Candida albicans |
title_full | A genome-wide transcriptional analysis of morphology determination in Candida albicans |
title_fullStr | A genome-wide transcriptional analysis of morphology determination in Candida albicans |
title_full_unstemmed | A genome-wide transcriptional analysis of morphology determination in Candida albicans |
title_short | A genome-wide transcriptional analysis of morphology determination in Candida albicans |
title_sort | genome-wide transcriptional analysis of morphology determination in candida albicans |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564527/ https://www.ncbi.nlm.nih.gov/pubmed/23242994 http://dx.doi.org/10.1091/mbc.E12-01-0065 |
work_keys_str_mv | AT carlislepatricial agenomewidetranscriptionalanalysisofmorphologydeterminationincandidaalbicans AT kadoshdavid agenomewidetranscriptionalanalysisofmorphologydeterminationincandidaalbicans AT carlislepatricial genomewidetranscriptionalanalysisofmorphologydeterminationincandidaalbicans AT kadoshdavid genomewidetranscriptionalanalysisofmorphologydeterminationincandidaalbicans |