Cargando…
Diva/BclB regulates differentiation by inhibiting NDPKB/Nm23H2-mediated neuronal differentiation in PC-12 cells
BACKGROUND: Diva (death inducer binding to vBcl-2 and Apaf-1)/BclB is a Bcl-2 family member, which is known for its function in apoptosis. Diva/BclB has been shown to interact with NDPKB/Nm23H2, which is involved in cellular differentiation. Thus far, there has been no direct evidence of Diva/BclB h...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3564942/ https://www.ncbi.nlm.nih.gov/pubmed/23057762 http://dx.doi.org/10.1186/1471-2202-13-123 |
Sumario: | BACKGROUND: Diva (death inducer binding to vBcl-2 and Apaf-1)/BclB is a Bcl-2 family member, which is known for its function in apoptosis. Diva/BclB has been shown to interact with NDPKB/Nm23H2, which is involved in cellular differentiation. Thus far, there has been no direct evidence of Diva/BclB having a role in differentiation. In the present study, we investigated the expression of Diva/BclB and NDPKB/Nm23H2 during differentiation in PC-12 cell line. RESULTS: Our results show that after differentiation, Diva/BclB expression was decreased and reciprocally, NDPKB/Nm23H2 expression was increased and it translocated into the nucleus. Overexpression of NDPKB/Nm23H2 promoted PC-12 neuronal differentiation by increasing neurite outgrowth and arresting cell cycle progression. There was a concurrent downregulation of Diva/Boo when NDPKB/Nm23H2 was overexpressed, which mirrors the effect of NGF on PC-12 cell differentiation. Overexpression of Diva/BclB did not change the expression level of NDPKB/Nm23H2, but inhibited its nuclear localization. Cells that overexpressed Diva/BclB presented a decreased percentage of differentiated cells and average neurite length was shortened. This was due to an increase in the formation of Diva/BclB and NDPKB/Nm23H2 complexes as well as Diva/BclB and β-tubulin complexes. Concomitantly, there was a decrease in formation of NDPKB/Nm23H2 and β-tubulin complexes. Overexpression of Diva/BclB also resulted in a higher percentage of S-phase cells. CONCLUSION: Our results showed a novel role for Diva/BclB in neuronal differentiation. Its downregulation during neuronal differentiation may be necessary to allow NDPKB/Nm23H2 and β-tubulin interaction that promotes NDPKB/Nm23H2 mediated differentiation. |
---|