Cargando…

Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies

Magnetostatic (dipolar) interactions between nanoparticles promise to open new ways to design nanocrystalline magnetic materials and devices if the collective magnetic properties can be controlled at the nanoparticle level. Magnetic dipolar interactions are sufficiently strong to sustain magnetic or...

Descripción completa

Detalles Bibliográficos
Autores principales: Varón, M., Beleggia, M., Kasama, T., Harrison, R. J., Dunin-Borkowski, R. E., Puntes, V. F., Frandsen, C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565170/
https://www.ncbi.nlm.nih.gov/pubmed/23390584
http://dx.doi.org/10.1038/srep01234
_version_ 1782258412507103232
author Varón, M.
Beleggia, M.
Kasama, T.
Harrison, R. J.
Dunin-Borkowski, R. E.
Puntes, V. F.
Frandsen, C.
author_facet Varón, M.
Beleggia, M.
Kasama, T.
Harrison, R. J.
Dunin-Borkowski, R. E.
Puntes, V. F.
Frandsen, C.
author_sort Varón, M.
collection PubMed
description Magnetostatic (dipolar) interactions between nanoparticles promise to open new ways to design nanocrystalline magnetic materials and devices if the collective magnetic properties can be controlled at the nanoparticle level. Magnetic dipolar interactions are sufficiently strong to sustain magnetic order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ≥ 100 μ(B). Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15 nm cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies.
format Online
Article
Text
id pubmed-3565170
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-35651702013-02-06 Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies Varón, M. Beleggia, M. Kasama, T. Harrison, R. J. Dunin-Borkowski, R. E. Puntes, V. F. Frandsen, C. Sci Rep Article Magnetostatic (dipolar) interactions between nanoparticles promise to open new ways to design nanocrystalline magnetic materials and devices if the collective magnetic properties can be controlled at the nanoparticle level. Magnetic dipolar interactions are sufficiently strong to sustain magnetic order at ambient temperature in assemblies of closely-spaced nanoparticles with magnetic moments of ≥ 100 μ(B). Here we use electron holography with sub-particle resolution to reveal the correlation between particle arrangement and magnetic order in self-assembled 1D and quasi-2D arrangements of 15 nm cobalt nanoparticles. In the initial states, we observe dipolar ferromagnetism, antiferromagnetism and local flux closure, depending on the particle arrangement. Surprisingly, after magnetic saturation, measurements and numerical simulations show that overall ferromagnetic order exists in the present nanoparticle assemblies even when their arrangement is completely disordered. Such direct quantification of the correlation between topological and magnetic order is essential for the technological exploitation of magnetic quasi-2D nanoparticle assemblies. Nature Publishing Group 2013-02-06 /pmc/articles/PMC3565170/ /pubmed/23390584 http://dx.doi.org/10.1038/srep01234 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Varón, M.
Beleggia, M.
Kasama, T.
Harrison, R. J.
Dunin-Borkowski, R. E.
Puntes, V. F.
Frandsen, C.
Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies
title Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies
title_full Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies
title_fullStr Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies
title_full_unstemmed Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies
title_short Dipolar Magnetism in Ordered and Disordered Low-Dimensional Nanoparticle Assemblies
title_sort dipolar magnetism in ordered and disordered low-dimensional nanoparticle assemblies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565170/
https://www.ncbi.nlm.nih.gov/pubmed/23390584
http://dx.doi.org/10.1038/srep01234
work_keys_str_mv AT varonm dipolarmagnetisminorderedanddisorderedlowdimensionalnanoparticleassemblies
AT beleggiam dipolarmagnetisminorderedanddisorderedlowdimensionalnanoparticleassemblies
AT kasamat dipolarmagnetisminorderedanddisorderedlowdimensionalnanoparticleassemblies
AT harrisonrj dipolarmagnetisminorderedanddisorderedlowdimensionalnanoparticleassemblies
AT duninborkowskire dipolarmagnetisminorderedanddisorderedlowdimensionalnanoparticleassemblies
AT puntesvf dipolarmagnetisminorderedanddisorderedlowdimensionalnanoparticleassemblies
AT frandsenc dipolarmagnetisminorderedanddisorderedlowdimensionalnanoparticleassemblies