Cargando…
Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics
BACKGROUND: The medial prefrontal cortex (mPFC) serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565915/ https://www.ncbi.nlm.nih.gov/pubmed/23044043 http://dx.doi.org/10.1186/1756-6606-5-36 |
_version_ | 1782258491723874304 |
---|---|
author | Ji, Guangchen Neugebauer, Volker |
author_facet | Ji, Guangchen Neugebauer, Volker |
author_sort | Ji, Guangchen |
collection | PubMed |
description | BACKGROUND: The medial prefrontal cortex (mPFC) serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders such as PTSD and with cognitive decision-making deficits in neuropsychiatric disorders and persistent pain. Controlling mPFC output is a desirable therapeutic goal in neuropsychiatric disorders but functional differences of cell types (pyramidal cells and interneurons) and regions (infralimbic and prelimbic) represent a challenge. This electrophysiological study used optogenetics for the cell- and region-specific modulation of mPFC pyramidal output in the intact anesthetized animal. RESULTS: Extracellular single-unit recordings were made from infralimbic (IL) pyramidal cells, IL interneurons and prelimbic (PL) pyramidal cells 2–3 weeks after intra-IL injection of a viral vector encoding channel rhodopsin 2 (ChR2) under the control of the CaMKII promoter (rAAV5/CaMKIIa-ChR2(H134R)-EYFP) or a control vector that lacked the ChR2 sequence (rAAV5/CaMKIIa-EYFP). Optical stimulation with laser-generated blue light pulses delivered through an optical fiber to the IL increased spontaneous and evoked action potential firing of ChR2 expressing IL pyramidal cells but had no effect on IL interneurons that were distinguished from pyramidal cells based on their higher firing rate and shorter spike duration. Optical activation of IL pyramidal cells also inhibited PL pyramidal cells, suggesting that IL output controls PL output. The effects were light intensity-dependent and reversible. Confocal microscopy confirmed ChR2-EYFP or control vector expression in mPFC pyramidal cells but not in GABAergic cells. CONCLUSIONS: The novelty of our study is the analysis of optogenetic effects on background and evoked activity of defined cell types in different mPFC regions. The electrophysiological in vivo results directly demonstrate the optogenetic modulation of mPFC activity in a region- and cell type-specific manner, which is significant in conditions of impaired mPFC output. |
format | Online Article Text |
id | pubmed-3565915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35659152013-02-11 Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics Ji, Guangchen Neugebauer, Volker Mol Brain Research BACKGROUND: The medial prefrontal cortex (mPFC) serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders such as PTSD and with cognitive decision-making deficits in neuropsychiatric disorders and persistent pain. Controlling mPFC output is a desirable therapeutic goal in neuropsychiatric disorders but functional differences of cell types (pyramidal cells and interneurons) and regions (infralimbic and prelimbic) represent a challenge. This electrophysiological study used optogenetics for the cell- and region-specific modulation of mPFC pyramidal output in the intact anesthetized animal. RESULTS: Extracellular single-unit recordings were made from infralimbic (IL) pyramidal cells, IL interneurons and prelimbic (PL) pyramidal cells 2–3 weeks after intra-IL injection of a viral vector encoding channel rhodopsin 2 (ChR2) under the control of the CaMKII promoter (rAAV5/CaMKIIa-ChR2(H134R)-EYFP) or a control vector that lacked the ChR2 sequence (rAAV5/CaMKIIa-EYFP). Optical stimulation with laser-generated blue light pulses delivered through an optical fiber to the IL increased spontaneous and evoked action potential firing of ChR2 expressing IL pyramidal cells but had no effect on IL interneurons that were distinguished from pyramidal cells based on their higher firing rate and shorter spike duration. Optical activation of IL pyramidal cells also inhibited PL pyramidal cells, suggesting that IL output controls PL output. The effects were light intensity-dependent and reversible. Confocal microscopy confirmed ChR2-EYFP or control vector expression in mPFC pyramidal cells but not in GABAergic cells. CONCLUSIONS: The novelty of our study is the analysis of optogenetic effects on background and evoked activity of defined cell types in different mPFC regions. The electrophysiological in vivo results directly demonstrate the optogenetic modulation of mPFC activity in a region- and cell type-specific manner, which is significant in conditions of impaired mPFC output. BioMed Central 2012-10-08 /pmc/articles/PMC3565915/ /pubmed/23044043 http://dx.doi.org/10.1186/1756-6606-5-36 Text en Copyright ©2012 Ji and Neugebauer; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Ji, Guangchen Neugebauer, Volker Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics |
title | Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics |
title_full | Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics |
title_fullStr | Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics |
title_full_unstemmed | Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics |
title_short | Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics |
title_sort | modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565915/ https://www.ncbi.nlm.nih.gov/pubmed/23044043 http://dx.doi.org/10.1186/1756-6606-5-36 |
work_keys_str_mv | AT jiguangchen modulationofmedialprefrontalcorticalactivityusinginvivorecordingsandoptogenetics AT neugebauervolker modulationofmedialprefrontalcorticalactivityusinginvivorecordingsandoptogenetics |