Cargando…

Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics

BACKGROUND: The medial prefrontal cortex (mPFC) serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Guangchen, Neugebauer, Volker
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565915/
https://www.ncbi.nlm.nih.gov/pubmed/23044043
http://dx.doi.org/10.1186/1756-6606-5-36
_version_ 1782258491723874304
author Ji, Guangchen
Neugebauer, Volker
author_facet Ji, Guangchen
Neugebauer, Volker
author_sort Ji, Guangchen
collection PubMed
description BACKGROUND: The medial prefrontal cortex (mPFC) serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders such as PTSD and with cognitive decision-making deficits in neuropsychiatric disorders and persistent pain. Controlling mPFC output is a desirable therapeutic goal in neuropsychiatric disorders but functional differences of cell types (pyramidal cells and interneurons) and regions (infralimbic and prelimbic) represent a challenge. This electrophysiological study used optogenetics for the cell- and region-specific modulation of mPFC pyramidal output in the intact anesthetized animal. RESULTS: Extracellular single-unit recordings were made from infralimbic (IL) pyramidal cells, IL interneurons and prelimbic (PL) pyramidal cells 2–3 weeks after intra-IL injection of a viral vector encoding channel rhodopsin 2 (ChR2) under the control of the CaMKII promoter (rAAV5/CaMKIIa-ChR2(H134R)-EYFP) or a control vector that lacked the ChR2 sequence (rAAV5/CaMKIIa-EYFP). Optical stimulation with laser-generated blue light pulses delivered through an optical fiber to the IL increased spontaneous and evoked action potential firing of ChR2 expressing IL pyramidal cells but had no effect on IL interneurons that were distinguished from pyramidal cells based on their higher firing rate and shorter spike duration. Optical activation of IL pyramidal cells also inhibited PL pyramidal cells, suggesting that IL output controls PL output. The effects were light intensity-dependent and reversible. Confocal microscopy confirmed ChR2-EYFP or control vector expression in mPFC pyramidal cells but not in GABAergic cells. CONCLUSIONS: The novelty of our study is the analysis of optogenetic effects on background and evoked activity of defined cell types in different mPFC regions. The electrophysiological in vivo results directly demonstrate the optogenetic modulation of mPFC activity in a region- and cell type-specific manner, which is significant in conditions of impaired mPFC output.
format Online
Article
Text
id pubmed-3565915
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35659152013-02-11 Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics Ji, Guangchen Neugebauer, Volker Mol Brain Research BACKGROUND: The medial prefrontal cortex (mPFC) serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders such as PTSD and with cognitive decision-making deficits in neuropsychiatric disorders and persistent pain. Controlling mPFC output is a desirable therapeutic goal in neuropsychiatric disorders but functional differences of cell types (pyramidal cells and interneurons) and regions (infralimbic and prelimbic) represent a challenge. This electrophysiological study used optogenetics for the cell- and region-specific modulation of mPFC pyramidal output in the intact anesthetized animal. RESULTS: Extracellular single-unit recordings were made from infralimbic (IL) pyramidal cells, IL interneurons and prelimbic (PL) pyramidal cells 2–3 weeks after intra-IL injection of a viral vector encoding channel rhodopsin 2 (ChR2) under the control of the CaMKII promoter (rAAV5/CaMKIIa-ChR2(H134R)-EYFP) or a control vector that lacked the ChR2 sequence (rAAV5/CaMKIIa-EYFP). Optical stimulation with laser-generated blue light pulses delivered through an optical fiber to the IL increased spontaneous and evoked action potential firing of ChR2 expressing IL pyramidal cells but had no effect on IL interneurons that were distinguished from pyramidal cells based on their higher firing rate and shorter spike duration. Optical activation of IL pyramidal cells also inhibited PL pyramidal cells, suggesting that IL output controls PL output. The effects were light intensity-dependent and reversible. Confocal microscopy confirmed ChR2-EYFP or control vector expression in mPFC pyramidal cells but not in GABAergic cells. CONCLUSIONS: The novelty of our study is the analysis of optogenetic effects on background and evoked activity of defined cell types in different mPFC regions. The electrophysiological in vivo results directly demonstrate the optogenetic modulation of mPFC activity in a region- and cell type-specific manner, which is significant in conditions of impaired mPFC output. BioMed Central 2012-10-08 /pmc/articles/PMC3565915/ /pubmed/23044043 http://dx.doi.org/10.1186/1756-6606-5-36 Text en Copyright ©2012 Ji and Neugebauer; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Ji, Guangchen
Neugebauer, Volker
Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics
title Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics
title_full Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics
title_fullStr Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics
title_full_unstemmed Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics
title_short Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics
title_sort modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565915/
https://www.ncbi.nlm.nih.gov/pubmed/23044043
http://dx.doi.org/10.1186/1756-6606-5-36
work_keys_str_mv AT jiguangchen modulationofmedialprefrontalcorticalactivityusinginvivorecordingsandoptogenetics
AT neugebauervolker modulationofmedialprefrontalcorticalactivityusinginvivorecordingsandoptogenetics