Cargando…

Differential expression of major histocompatibility complex class I in developmental glioneuronal lesions

PURPOSE: The expression of the major histocompatibility complex class I (MHC-I) in the brain has received considerable interest not only because of its fundamental role in the immune system, but also for its non-immune functions in the context of activity-dependent brain development and plasticity....

Descripción completa

Detalles Bibliográficos
Autores principales: Prabowo, Avanita S, Iyer, Anand M, Anink, Jasper J, Spliet, Wim GM, van Rijen, Peter C, Aronica, Eleonora
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3565983/
https://www.ncbi.nlm.nih.gov/pubmed/23347564
http://dx.doi.org/10.1186/1742-2094-10-12
Descripción
Sumario:PURPOSE: The expression of the major histocompatibility complex class I (MHC-I) in the brain has received considerable interest not only because of its fundamental role in the immune system, but also for its non-immune functions in the context of activity-dependent brain development and plasticity. METHODS: In the present study we evaluated the expression and cellular pattern of MHC-I in focal glioneuronal lesions associated with intractable epilepsy. MHC-I expression was studied in epilepsy surgery cases with focal cortical dysplasia (FCD I, n = 6; FCD IIa, n = 6 and FCD IIb, n = 15), tuberous sclerosis complex (TSC, cortical tubers; n = 6) or ganglioglioma (GG; n = 15) using immunocytochemistry. Evaluation of T lymphocytes with granzyme-B(+) granules and albumin immunoreactivity was also performed. RESULTS: All lesions were characterized by MHC-I expression in blood vessels. Expression in both endothelial and microglial cells as well as in neurons (dysmorphic/dysplastic neurons) was observed in FCD II, TSC and GG cases. We observed perivascular and parenchymal T lymphocytes (CD8(+), T-cytotoxic) with granzyme-B(+) granules in FCD IIb and TSC specimens. Albumin extravasation, with uptake in astrocytes, was observed in FCD IIb and GG cases. CONCLUSIONS: Our findings indicate a prominent upregulation of MHC-I as part of the immune response occurring in epileptogenic glioneuronal lesions. In particular, the induction of MHC-I in neuronal cells appears to be a feature of type II FCD, TSC and GG and may represent an important accompanying event of the immune response, associated with blood–brain barrier dysfunction, in these developmental lesions.