Cargando…

Trans-Generational Effects of Mild Heat Stress on the Life History Traits of an Aphid Parasitoid

Temperature changes are common in nature and insects are particularly exposed and sensitive to such variations which can be potential stresses, ultimately affecting life history traits and overall fitness. Braconids have been widely used to study the effects of temperature on host-parasitoid interac...

Descripción completa

Detalles Bibliográficos
Autores principales: Ismaeil, Ibrahim, Doury, Géraldine, Desouhant, Emmanuel, Dubois, Françoise, Prevost, Geneviève, Couty, Aude
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566165/
https://www.ncbi.nlm.nih.gov/pubmed/23405079
http://dx.doi.org/10.1371/journal.pone.0054306
Descripción
Sumario:Temperature changes are common in nature and insects are particularly exposed and sensitive to such variations which can be potential stresses, ultimately affecting life history traits and overall fitness. Braconids have been widely used to study the effects of temperature on host-parasitoid interactions and the present work focused on the solitary endoparasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae Aphidiidae), an efficient biological control agent commercially used against aphids such as the potato aphid Macrosiphum euphorbiae Thomas (Sternorrhyncha: Aphididae). Contrary to previous studies using heat shocks at extreme temperatures, we evaluated the effects of mild heat stresses by transferring young parasitoid adults from the constant temperature of 20°C to either a warm (25°C) or hot (28°C) temperature, for either 1 h or 48 h. Such treatments are consistent with situations commonly experienced by parasitoids when moved from their rearing conditions to greenhouses or field conditions. The effects were evaluated both on the heat stressed A. ervi adults (G0) (immediate effects) and on their first generation (G1) progeny (trans-generational effects). G0 wasps’ mortality was significantly affected by the temperature in interaction with the duration of the stress. Longevity of G0 wasps surviving the heat stress was negatively affected by the temperature and females lived longer than males. Heat stress applied to A. ervi parents also had consequences on their G1 progeny whose developmental time, rates of mummification and percentage of parasitoid completing total development were negatively affected. Surprisingly, the egg load at emergence of the G1 female progeny was increased when their mothers had been submitted to a mild heat stress of 25°C or 28°C. These results clearly demonstrate trans-generational phenotypic plasticity, showing that adaptation to thermal stresses may be achieved via maternal effects. This study also sheds light on the complexity of insect responses and underlying mechanisms to fluctuating conditions in their natural environment.