Cargando…

Functional genomic screening to enhance oncolytic virotherapy

Functional genomic screening has emerged as a powerful approach for understanding complex biological phenomena. Of the available tools, genome-wide RNA interference (RNAi) technology is unquestionably the most incisive, as it directly probes gene function. Recent applications of RNAi screening have...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahoney, D J, Stojdl, D F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566825/
https://www.ncbi.nlm.nih.gov/pubmed/23169279
http://dx.doi.org/10.1038/bjc.2012.467
Descripción
Sumario:Functional genomic screening has emerged as a powerful approach for understanding complex biological phenomena. Of the available tools, genome-wide RNA interference (RNAi) technology is unquestionably the most incisive, as it directly probes gene function. Recent applications of RNAi screening have been impressive. Notable amongst these are its use in elucidated mechanism(s) for signal transduction, various aspects of cell biology, tumourigenesis and metastasis, resistance to cancer therapeutics, and the host's response to a pathogen. Herein we discuss how recent RNAi screening efforts have helped turn our attention to the targetability of non-oncogene support pathways for cancer treatment, with a particular focus on a recent study that identified a non-oncogene addiction to the ER stress response as a synergist target for oncolytic virus therapy (OVT). Moreover, we give our thoughts on the future of RNAi screening as a tool to enhance OVT and describe recent technical improvements that are poised to make genome-scale RNAi experiments more sensitive, less noisy, more applicable in vivo, and more easily validated in clinically relevant animal models.