Cargando…
MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection
BACKGROUND: Toxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. The cysts remain largely quiescent for the life of the host, but can reactivate and cause life-threatening toxopl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566937/ https://www.ncbi.nlm.nih.gov/pubmed/23374751 http://dx.doi.org/10.1186/1742-2094-10-19 |
_version_ | 1782258627097133056 |
---|---|
author | Torres, Marbel Guiton, Rachel Lacroix-Lamandé, Sonia Ryffel, Bernhard Leman, Samuel Dimier-Poisson, Isabelle |
author_facet | Torres, Marbel Guiton, Rachel Lacroix-Lamandé, Sonia Ryffel, Bernhard Leman, Samuel Dimier-Poisson, Isabelle |
author_sort | Torres, Marbel |
collection | PubMed |
description | BACKGROUND: Toxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. The cysts remain largely quiescent for the life of the host, but can reactivate and cause life-threatening toxoplasmic encephalitis in immunocompromised patients, such as those with AIDS, neoplastic diseases and organ transplants. Toll-like receptor (TLR) adaptor MyD88 activation is required for the innate sensing of Toxoplasma gondii. Mice deficient in MyD88 have defective IL-12 and Th1 effector responses, and are highly susceptible to the acute phase of T. gondii infection. However, the role of this signaling pathway during cerebral infection is poorly understood and requires examination. METHOD: MyD88-deficient mice and control mice were orally infected with T. gondii cysts. Cellular and parasite infiltration in the peripheral organs and in the brain were determined by histology and immunohistochemistry. Cytokine levels were determined by ELISA and chemokine mRNA levels were quantified by real-time PCR (qPCR). RESULTS: Thirteen days after infection, a higher parasite burden was observed but there was no histological change in the liver, heart, lungs and small intestine of MyD88(−/−) and MyD88(+/+) mice. However, MyD88(−/−) mice compared to MyD88(+/+) mice were highly susceptible to cerebral infection, displayed high parasite migration to the brain, severe neuropathological signs of encephalitis and succumbed within 2 weeks of oral infection. Susceptibility was primarily associated with lower expression of Th1 cytokines, especially IL-12, IFN-γ and TNF-α, significant decrease in the expression of CCL3, CCL5, CCL7 and CCL19 chemokines, marked defect of CD8(+) T cells, and infiltration of CD11b(+) and F4/80(+) cells in the brain. CONCLUSION: MyD88 is essential for the protection of mice during the cerebral installation of T. gondii infection. These results establish a role for MyD88 in T cell-mediated control of T. gondii in the central nervous system (CNS). |
format | Online Article Text |
id | pubmed-3566937 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35669372013-02-11 MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection Torres, Marbel Guiton, Rachel Lacroix-Lamandé, Sonia Ryffel, Bernhard Leman, Samuel Dimier-Poisson, Isabelle J Neuroinflammation Research BACKGROUND: Toxoplasmosis is one of the most common parasitic infections in humans. It can establish chronic infection and is characterized by the formation of tissue cysts in the brain. The cysts remain largely quiescent for the life of the host, but can reactivate and cause life-threatening toxoplasmic encephalitis in immunocompromised patients, such as those with AIDS, neoplastic diseases and organ transplants. Toll-like receptor (TLR) adaptor MyD88 activation is required for the innate sensing of Toxoplasma gondii. Mice deficient in MyD88 have defective IL-12 and Th1 effector responses, and are highly susceptible to the acute phase of T. gondii infection. However, the role of this signaling pathway during cerebral infection is poorly understood and requires examination. METHOD: MyD88-deficient mice and control mice were orally infected with T. gondii cysts. Cellular and parasite infiltration in the peripheral organs and in the brain were determined by histology and immunohistochemistry. Cytokine levels were determined by ELISA and chemokine mRNA levels were quantified by real-time PCR (qPCR). RESULTS: Thirteen days after infection, a higher parasite burden was observed but there was no histological change in the liver, heart, lungs and small intestine of MyD88(−/−) and MyD88(+/+) mice. However, MyD88(−/−) mice compared to MyD88(+/+) mice were highly susceptible to cerebral infection, displayed high parasite migration to the brain, severe neuropathological signs of encephalitis and succumbed within 2 weeks of oral infection. Susceptibility was primarily associated with lower expression of Th1 cytokines, especially IL-12, IFN-γ and TNF-α, significant decrease in the expression of CCL3, CCL5, CCL7 and CCL19 chemokines, marked defect of CD8(+) T cells, and infiltration of CD11b(+) and F4/80(+) cells in the brain. CONCLUSION: MyD88 is essential for the protection of mice during the cerebral installation of T. gondii infection. These results establish a role for MyD88 in T cell-mediated control of T. gondii in the central nervous system (CNS). BioMed Central 2013-02-01 /pmc/articles/PMC3566937/ /pubmed/23374751 http://dx.doi.org/10.1186/1742-2094-10-19 Text en Copyright ©2013 Torres et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Torres, Marbel Guiton, Rachel Lacroix-Lamandé, Sonia Ryffel, Bernhard Leman, Samuel Dimier-Poisson, Isabelle MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection |
title | MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection |
title_full | MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection |
title_fullStr | MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection |
title_full_unstemmed | MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection |
title_short | MyD88 is crucial for the development of a protective CNS immune response to Toxoplasma gondii infection |
title_sort | myd88 is crucial for the development of a protective cns immune response to toxoplasma gondii infection |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3566937/ https://www.ncbi.nlm.nih.gov/pubmed/23374751 http://dx.doi.org/10.1186/1742-2094-10-19 |
work_keys_str_mv | AT torresmarbel myd88iscrucialforthedevelopmentofaprotectivecnsimmuneresponsetotoxoplasmagondiiinfection AT guitonrachel myd88iscrucialforthedevelopmentofaprotectivecnsimmuneresponsetotoxoplasmagondiiinfection AT lacroixlamandesonia myd88iscrucialforthedevelopmentofaprotectivecnsimmuneresponsetotoxoplasmagondiiinfection AT ryffelbernhard myd88iscrucialforthedevelopmentofaprotectivecnsimmuneresponsetotoxoplasmagondiiinfection AT lemansamuel myd88iscrucialforthedevelopmentofaprotectivecnsimmuneresponsetotoxoplasmagondiiinfection AT dimierpoissonisabelle myd88iscrucialforthedevelopmentofaprotectivecnsimmuneresponsetotoxoplasmagondiiinfection |