Cargando…
Polygenic Modeling with Bayesian Sparse Linear Mixed Models
Both linear mixed models (LMMs) and sparse regression models are widely used in genetics applications, including, recently, polygenic modeling in genome-wide association studies. These two approaches make very different assumptions, so are expected to perform well in different situations. However, i...
Autores principales: | Zhou, Xiang, Carbonetto, Peter, Stephens, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567190/ https://www.ncbi.nlm.nih.gov/pubmed/23408905 http://dx.doi.org/10.1371/journal.pgen.1003264 |
Ejemplares similares
-
Development of sparse Bayesian multinomial generalized linear model for multi-class prediction
por: Madahian, Behrouz, et al.
Publicado: (2014) -
Efficient Algorithms for Multivariate Linear Mixed Models in Genome-wide Association Studies
por: Zhou, Xiang, et al.
Publicado: (2014) -
Bayesian Generalized Linear Mixed Modeling of Breast Cancer
por: ROPO EBENEZER, Ogunsakin, et al.
Publicado: (2019) -
Bayesian imputation of time-varying covariates in linear mixed
models
por: Erler, Nicole S, et al.
Publicado: (2017) -
Sparse Estimation Strategies in Linear Mixed Effect Models for High-Dimensional Data Application
por: Opoku, Eugene A., et al.
Publicado: (2021)