Cargando…

Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells

BACKGROUND: During metaphase clathrin stabilises the mitotic spindle kinetochore(K)-fibres. Many anti-mitotic compounds target microtubule dynamics. Pitstop 2™ is the first small molecule inhibitor of clathrin terminal domain and inhibits clathrin-mediated endocytosis. We investigated its effects on...

Descripción completa

Detalles Bibliográficos
Autores principales: Smith, Charlotte M, Haucke, Volker, McCluskey, Adam, Robinson, Phillip J, Chircop, Megan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3567983/
https://www.ncbi.nlm.nih.gov/pubmed/23327284
http://dx.doi.org/10.1186/1476-4598-12-4
Descripción
Sumario:BACKGROUND: During metaphase clathrin stabilises the mitotic spindle kinetochore(K)-fibres. Many anti-mitotic compounds target microtubule dynamics. Pitstop 2™ is the first small molecule inhibitor of clathrin terminal domain and inhibits clathrin-mediated endocytosis. We investigated its effects on a second function for clathrin in mitosis. RESULTS: Pitstop 2 did not impair clathrin recruitment to the spindle but disrupted its function once stationed there. Pitstop 2 trapped HeLa cells in metaphase through loss of mitotic spindle integrity and activation of the spindle assembly checkpoint, phenocopying clathrin depletion and aurora A kinase inhibition. CONCLUSIONS: Pitstop 2 is therefore a new tool for investigating clathrin spindle dynamics. Pitstop 2 reduced viability in dividing HeLa cells, without affecting dividing non-cancerous NIH3T3 cells, suggesting that clathrin is a possible novel anti-mitotic drug target.