Cargando…
Highly improved homopolymer aware nucleotide-protein alignments with 454 data
BACKGROUND: Roche 454 sequencing is the leading sequencing technology for producing long read high throughput sequence data. Unlike most methods where sequencing errors translate to base uncertainties, 454 sequencing inaccuracies create nucleotide gaps. These gaps are particularly troublesome for tr...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568017/ https://www.ncbi.nlm.nih.gov/pubmed/22971057 http://dx.doi.org/10.1186/1471-2105-13-230 |
_version_ | 1782258750198906880 |
---|---|
author | Lysholm, Fredrik |
author_facet | Lysholm, Fredrik |
author_sort | Lysholm, Fredrik |
collection | PubMed |
description | BACKGROUND: Roche 454 sequencing is the leading sequencing technology for producing long read high throughput sequence data. Unlike most methods where sequencing errors translate to base uncertainties, 454 sequencing inaccuracies create nucleotide gaps. These gaps are particularly troublesome for translated search tools such as BLASTx where they introduce frame-shifts and result in regions of decreased identity and/or terminated alignments, which affect further analysis. RESULTS: To address this issue, the Homopolymer Aware Cross Alignment Tool (HAXAT) was developed. HAXAT uses a novel dynamic programming algorithm for solving the optimal local alignment between a 454 nucleotide and a protein sequence by allowing frame-shifts, guided by 454 flowpeak values. The algorithm is an efficient minimal extension of the Smith-Waterman-Gotoh algorithm that easily fits in into other tools. Experiments using HAXAT demonstrate, through the introduction of 454 specific frame-shift penalties, significantly increased accuracy of alignments spanning homopolymer sequence errors. The full effect of the new parameters introduced with this novel alignment model is explored. Experimental results evaluating homopolymer inaccuracy through alignments show a two to five-fold increase in Matthews Correlation Coefficient over previous algorithms, for 454-derived data. CONCLUSIONS: This increased accuracy provided by HAXAT does not only result in improved homologue estimations, but also provides un-interrupted reading-frames, which greatly facilitate further analysis of protein space, for example phylogenetic analysis. The alignment tool is available at http://bioinfo.ifm.liu.se/454tools/haxat. |
format | Online Article Text |
id | pubmed-3568017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35680172013-02-13 Highly improved homopolymer aware nucleotide-protein alignments with 454 data Lysholm, Fredrik BMC Bioinformatics Research Article BACKGROUND: Roche 454 sequencing is the leading sequencing technology for producing long read high throughput sequence data. Unlike most methods where sequencing errors translate to base uncertainties, 454 sequencing inaccuracies create nucleotide gaps. These gaps are particularly troublesome for translated search tools such as BLASTx where they introduce frame-shifts and result in regions of decreased identity and/or terminated alignments, which affect further analysis. RESULTS: To address this issue, the Homopolymer Aware Cross Alignment Tool (HAXAT) was developed. HAXAT uses a novel dynamic programming algorithm for solving the optimal local alignment between a 454 nucleotide and a protein sequence by allowing frame-shifts, guided by 454 flowpeak values. The algorithm is an efficient minimal extension of the Smith-Waterman-Gotoh algorithm that easily fits in into other tools. Experiments using HAXAT demonstrate, through the introduction of 454 specific frame-shift penalties, significantly increased accuracy of alignments spanning homopolymer sequence errors. The full effect of the new parameters introduced with this novel alignment model is explored. Experimental results evaluating homopolymer inaccuracy through alignments show a two to five-fold increase in Matthews Correlation Coefficient over previous algorithms, for 454-derived data. CONCLUSIONS: This increased accuracy provided by HAXAT does not only result in improved homologue estimations, but also provides un-interrupted reading-frames, which greatly facilitate further analysis of protein space, for example phylogenetic analysis. The alignment tool is available at http://bioinfo.ifm.liu.se/454tools/haxat. BioMed Central 2012-09-12 /pmc/articles/PMC3568017/ /pubmed/22971057 http://dx.doi.org/10.1186/1471-2105-13-230 Text en Copyright ©2012 Lysholm; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lysholm, Fredrik Highly improved homopolymer aware nucleotide-protein alignments with 454 data |
title | Highly improved homopolymer aware nucleotide-protein alignments with 454 data |
title_full | Highly improved homopolymer aware nucleotide-protein alignments with 454 data |
title_fullStr | Highly improved homopolymer aware nucleotide-protein alignments with 454 data |
title_full_unstemmed | Highly improved homopolymer aware nucleotide-protein alignments with 454 data |
title_short | Highly improved homopolymer aware nucleotide-protein alignments with 454 data |
title_sort | highly improved homopolymer aware nucleotide-protein alignments with 454 data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568017/ https://www.ncbi.nlm.nih.gov/pubmed/22971057 http://dx.doi.org/10.1186/1471-2105-13-230 |
work_keys_str_mv | AT lysholmfredrik highlyimprovedhomopolymerawarenucleotideproteinalignmentswith454data |