Cargando…
Responsiveness of a modified version of the postural assessment scale for stroke patients and longitudinal change in postural control after stroke- Postural Stroke Study in Gothenburg (POSTGOT) -
BACKGROUND: Responsiveness data certify that a change in a measurement output represents a real change, not a measurement error or biological variability. The objective was to evaluate the responsiveness of the modified version of the Postural Assessment Scale for Stroke Patients (SwePASS) in patien...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568059/ https://www.ncbi.nlm.nih.gov/pubmed/23356652 http://dx.doi.org/10.1186/1743-0003-10-8 |
Sumario: | BACKGROUND: Responsiveness data certify that a change in a measurement output represents a real change, not a measurement error or biological variability. The objective was to evaluate the responsiveness of the modified version of the Postural Assessment Scale for Stroke Patients (SwePASS) in patients with a first event of stroke. An additional aim was to estimate the change in postural control during the first 12 months after stroke onset. METHODS: The SwePASS assessments were conducted during the first week and 3, 6 and 12 months after stroke in 90 patients. Svensson’s method, Relative Position (RP), Relative Concentration (RC) and Relative Rank Variance (RV), were used to estimate the scale’s responsiveness and the patients’ change in postural control over time. RESULTS: From the first week to 3 months after stroke, the patients improved in terms of postural control with 2 to 12 times larger systematic changes in Relative Position (RP), for which 9 items and the total score showed a significant responsiveness to change when compared to the intrarater reliability measurement error of the SwePASS reported in a previous study. When SwePASS was used to assess change in postural control between the first week and 3 months, 74% of the patients received higher scores while 10% received lower scores, RP 0.31 (95% CI 0.219-0.402). The corresponding figures between 3 and 6 and between 6 and 12 months were 37% and 16%, RP 0.09 (95% CI 0.030-0.152), and 18% and 26%, RP −0.07 (95% CI −0.134- (−0.010)), respectively. CONCLUSIONS: The SwePASS is responsive to change. Postural control evaluated using the SwePASS showed an improvement during the first 6 months after stroke. The measurement property, in the form of responsiveness, shows that the SwePASS scoring method can be considered for use in rehabilitation when assessing postural control in patients after stroke, especially during the first 3 months. |
---|