Cargando…

Queuosine Biosynthesis Is Required for Sinorhizobium meliloti-Induced Cytoskeletal Modifications on HeLa Cells and Symbiosis with Medicago truncatula

Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infec...

Descripción completa

Detalles Bibliográficos
Autores principales: Marchetti, Marta, Capela, Delphine, Poincloux, Renaud, Benmeradi, Nacer, Auriac, Marie-Christine, Le Ru, Aurélie, Maridonneau-Parini, Isabelle, Batut, Jacques, Masson-Boivin, Catherine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568095/
https://www.ncbi.nlm.nih.gov/pubmed/23409119
http://dx.doi.org/10.1371/journal.pone.0056043
_version_ 1782258766264139776
author Marchetti, Marta
Capela, Delphine
Poincloux, Renaud
Benmeradi, Nacer
Auriac, Marie-Christine
Le Ru, Aurélie
Maridonneau-Parini, Isabelle
Batut, Jacques
Masson-Boivin, Catherine
author_facet Marchetti, Marta
Capela, Delphine
Poincloux, Renaud
Benmeradi, Nacer
Auriac, Marie-Christine
Le Ru, Aurélie
Maridonneau-Parini, Isabelle
Batut, Jacques
Masson-Boivin, Catherine
author_sort Marchetti, Marta
collection PubMed
description Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.
format Online
Article
Text
id pubmed-3568095
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35680952013-02-13 Queuosine Biosynthesis Is Required for Sinorhizobium meliloti-Induced Cytoskeletal Modifications on HeLa Cells and Symbiosis with Medicago truncatula Marchetti, Marta Capela, Delphine Poincloux, Renaud Benmeradi, Nacer Auriac, Marie-Christine Le Ru, Aurélie Maridonneau-Parini, Isabelle Batut, Jacques Masson-Boivin, Catherine PLoS One Research Article Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton. Public Library of Science 2013-02-08 /pmc/articles/PMC3568095/ /pubmed/23409119 http://dx.doi.org/10.1371/journal.pone.0056043 Text en © 2013 Marchetti et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Marchetti, Marta
Capela, Delphine
Poincloux, Renaud
Benmeradi, Nacer
Auriac, Marie-Christine
Le Ru, Aurélie
Maridonneau-Parini, Isabelle
Batut, Jacques
Masson-Boivin, Catherine
Queuosine Biosynthesis Is Required for Sinorhizobium meliloti-Induced Cytoskeletal Modifications on HeLa Cells and Symbiosis with Medicago truncatula
title Queuosine Biosynthesis Is Required for Sinorhizobium meliloti-Induced Cytoskeletal Modifications on HeLa Cells and Symbiosis with Medicago truncatula
title_full Queuosine Biosynthesis Is Required for Sinorhizobium meliloti-Induced Cytoskeletal Modifications on HeLa Cells and Symbiosis with Medicago truncatula
title_fullStr Queuosine Biosynthesis Is Required for Sinorhizobium meliloti-Induced Cytoskeletal Modifications on HeLa Cells and Symbiosis with Medicago truncatula
title_full_unstemmed Queuosine Biosynthesis Is Required for Sinorhizobium meliloti-Induced Cytoskeletal Modifications on HeLa Cells and Symbiosis with Medicago truncatula
title_short Queuosine Biosynthesis Is Required for Sinorhizobium meliloti-Induced Cytoskeletal Modifications on HeLa Cells and Symbiosis with Medicago truncatula
title_sort queuosine biosynthesis is required for sinorhizobium meliloti-induced cytoskeletal modifications on hela cells and symbiosis with medicago truncatula
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568095/
https://www.ncbi.nlm.nih.gov/pubmed/23409119
http://dx.doi.org/10.1371/journal.pone.0056043
work_keys_str_mv AT marchettimarta queuosinebiosynthesisisrequiredforsinorhizobiummelilotiinducedcytoskeletalmodificationsonhelacellsandsymbiosiswithmedicagotruncatula
AT capeladelphine queuosinebiosynthesisisrequiredforsinorhizobiummelilotiinducedcytoskeletalmodificationsonhelacellsandsymbiosiswithmedicagotruncatula
AT poinclouxrenaud queuosinebiosynthesisisrequiredforsinorhizobiummelilotiinducedcytoskeletalmodificationsonhelacellsandsymbiosiswithmedicagotruncatula
AT benmeradinacer queuosinebiosynthesisisrequiredforsinorhizobiummelilotiinducedcytoskeletalmodificationsonhelacellsandsymbiosiswithmedicagotruncatula
AT auriacmariechristine queuosinebiosynthesisisrequiredforsinorhizobiummelilotiinducedcytoskeletalmodificationsonhelacellsandsymbiosiswithmedicagotruncatula
AT leruaurelie queuosinebiosynthesisisrequiredforsinorhizobiummelilotiinducedcytoskeletalmodificationsonhelacellsandsymbiosiswithmedicagotruncatula
AT maridonneaupariniisabelle queuosinebiosynthesisisrequiredforsinorhizobiummelilotiinducedcytoskeletalmodificationsonhelacellsandsymbiosiswithmedicagotruncatula
AT batutjacques queuosinebiosynthesisisrequiredforsinorhizobiummelilotiinducedcytoskeletalmodificationsonhelacellsandsymbiosiswithmedicagotruncatula
AT massonboivincatherine queuosinebiosynthesisisrequiredforsinorhizobiummelilotiinducedcytoskeletalmodificationsonhelacellsandsymbiosiswithmedicagotruncatula