Cargando…

Brain death induces renal expression of heme oxygenase-1 and heat shock protein 70

BACKGROUND: Kidneys derived from brain dead donors have lower graft survival and higher graft-function loss compared to their living donor counterpart. Heat Shock Proteins (HSP) are a large family of stress proteins involved in maintaining cell homeostasis. We studied the role of stress-inducible ge...

Descripción completa

Detalles Bibliográficos
Autores principales: van Dullemen, Leon FA, Bos, Eelke M, Schuurs, Theo A, Kampinga, Harm H, Ploeg, Rutger J, van Goor, Harry, Leuvenink, Henri GD
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568717/
https://www.ncbi.nlm.nih.gov/pubmed/23356498
http://dx.doi.org/10.1186/1479-5876-11-22
Descripción
Sumario:BACKGROUND: Kidneys derived from brain dead donors have lower graft survival and higher graft-function loss compared to their living donor counterpart. Heat Shock Proteins (HSP) are a large family of stress proteins involved in maintaining cell homeostasis. We studied the role of stress-inducible genes Heme Oxygenase-1 (HO-1), HSP27, HSP40, and HSP70 in the kidney following a 4 hour period of brain death. METHODS: Brain death was induced in rats (n=6) by inflating a balloon catheter in the epidural space. Kidneys were analysed for HSPs using RT-PCR, Western blotting, and immunohistochemistry. RESULTS: RT-PCR data showed a significant increase in gene expression for HO-1 and HSP70 in kidneys of brain dead rats. Western blotting revealed a massive increase in HO-1 protein in brain dead rat kidneys. Immunohistochemistry confirmed these findings, showing extensive HO-1 protein expression in the renal cortical tubules of brain dead rats. HSP70 protein was predominantly increased in renal distal tubules of brain dead rats treated for hypotension. CONCLUSION: Renal stress caused by brain death induces expression of the cytoprotective genes HO-1 and HSP70, but not of HSP27 and HSP40. The upregulation of these cytoprotective genes indicate that renal damage occurs during brain death, and could be part of a protective or recuperative mechanism induced by brain death-associated stress.