Cargando…

Suppressions of Migration and Invasion by Cantharidin in TSGH-8301 Human Bladder Carcinoma Cells through the Inhibitions of Matrix Metalloproteinase-2/-9 Signaling

Cancer metastasis becomes an initial cause of cancer death in human population. In many cancers, it has been shown that the high levels of matrix metalloproteinase (MMP)-2 and/or MMP-9 are associated with the invasive phenotypes of cancer cells. In this study, we investigated the effects of canthari...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yi-Ping, Ni, Chien-Hang, Lu, Chi-Cheng, Chiang, Jo-Hua, Yang, Jai-Sing, Ko, Yang-Ching, Lin, Jing-Pin, Kuo, Jehn-Hwa, Chang, Shu-Jen, Chung, Jing-Gung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568914/
https://www.ncbi.nlm.nih.gov/pubmed/23431332
http://dx.doi.org/10.1155/2013/190281
Descripción
Sumario:Cancer metastasis becomes an initial cause of cancer death in human population. In many cancers, it has been shown that the high levels of matrix metalloproteinase (MMP)-2 and/or MMP-9 are associated with the invasive phenotypes of cancer cells. In this study, we investigated the effects of cantharidin, a derivative of blister beetles which is one of the traditional Chinese medicines, on the adhesion, migration, and invasion of human bladder cancer TSGH-8301 cells. Cantharidin effectively suppressed TSGH-8301 cell adhesion, migration, and invasion in a concentration-dependent manner. Results from Western blotting, RT-PCR, and gelatin zymography assays indicated that cantharidin blocked the protein levels, gene expression (mRNA), and activities of MMP-2 and -9 in TSGH-8301 cells. Cantharidin also significantly suppressed the protein expressions of p-p38 and p-JNK1/2 in TSGH-8301 cells. Taken together, cantharidin was suggested to present antimetastatic potential via suppressing the levels of MMP-2 and MMP-9 expression that might be mediated by targeting the p38 and JNK1/2 MAPKs pathway in TSGH-8301 human bladder cancer cells.