Cargando…
The Ca(2+)/Mn(2+) ion-pump PMR1 links elevation of cytosolic Ca(2+) levels to α-synuclein toxicity in Parkinson's disease models
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons, which arises from a yet elusive concurrence between genetic and environmental factors. The protein α-synuclein (αSyn), the principle toxic effector in PD, has been shown to interfere with neuronal Ca(2+)...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3569987/ https://www.ncbi.nlm.nih.gov/pubmed/23154387 http://dx.doi.org/10.1038/cdd.2012.142 |
Sumario: | Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons, which arises from a yet elusive concurrence between genetic and environmental factors. The protein α-synuclein (αSyn), the principle toxic effector in PD, has been shown to interfere with neuronal Ca(2+) fluxes, arguing for an involvement of deregulated Ca(2+) homeostasis in this neuronal demise. Here, we identify the Golgi-resident Ca(2+)/Mn(2+) ATPase PMR1 (plasma membrane-related Ca(2+)-ATPase 1) as a phylogenetically conserved mediator of αSyn-driven changes in Ca(2+) homeostasis and cytotoxicity. Expression of αSyn in yeast resulted in elevated cytosolic Ca(2+) levels and increased cell death, both of which could be inhibited by deletion of PMR1. Accordingly, absence of PMR1 prevented αSyn-induced loss of dopaminergic neurons in nematodes and flies. In addition, αSyn failed to compromise locomotion and survival of flies when PMR1 was absent. In conclusion, the αSyn-driven rise of cytosolic Ca(2+) levels is pivotal for its cytotoxicity and requires PMR1. |
---|