Cargando…

Optimizing osmotic pressure removes EBV particles from B95-8 host cells while maintaining normal activity

This study demonstrates the removal of virus particles from B95-8 host cells that maintain normal activity under optimal osmotic pressure. After infecting B95-8 cells with Epstein-Barr virus (EBV) particles, the cells were treated with isosmotic solution [0.90% NaCl (330 mOsm/kg H(2)O)], hyposmotic...

Descripción completa

Detalles Bibliográficos
Autores principales: PAN, MIN, SHEN, JING, CAI, JIE
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570134/
https://www.ncbi.nlm.nih.gov/pubmed/23403890
http://dx.doi.org/10.3892/etm.2013.907
Descripción
Sumario:This study demonstrates the removal of virus particles from B95-8 host cells that maintain normal activity under optimal osmotic pressure. After infecting B95-8 cells with Epstein-Barr virus (EBV) particles, the cells were treated with isosmotic solution [0.90% NaCl (330 mOsm/kg H(2)O)], hyposmotic solutions [0.36% NaCl (115 mOsm/kg H(2)O) and 0.27% NaCl (93 mOsm/kg H(2)O)] and distilled water. The pumping levels of virus particles were observed by inverse phase contrast microscopy and transmission electron microscopy (TEM). After treatment with the hyposmotic solutions, the following results were observed: firstly, after culturing for 24 and 48 h, the B95-8 cells in the hyposmotic solutions grew as well as the cells cultured in the isosmotic solution. Secondly, the virus particles in the B95-8 host cells overflowed onto the surface of the cells, while the organelle structures remained intact. This phenomenon was repeated in the removal of human immunodeficiency virus (HIV) from leukomonocytes. By optimizing the osmotic pressure, the activity of the B95-8 host cells was retained and the EBV particles were transported from the cells onto the cell surface.