Cargando…

Monitoring and kinetic analysis of the molecular interactions by which a repressor protein, PhaR, binds to target DNAs and poly[(R)-3-hydroxybutyrate]

The repressor protein PhaR, which is a component of poly[(R)-3-hydroxybutyrate] granules, functions as a repressor of the gene expression of the phasin PhaP and of PhaR itself. We used a quartz crystal microbalance to investigate the binding behavior by which PhaR in Ralstonia eutropha H16 targets D...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamada, Miwa, Takahashi, Shuntaro, Okahata, Yoshio, Doi, Yoshiharu, Numata, Keiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570403/
https://www.ncbi.nlm.nih.gov/pubmed/23351303
http://dx.doi.org/10.1186/2191-0855-3-6
Descripción
Sumario:The repressor protein PhaR, which is a component of poly[(R)-3-hydroxybutyrate] granules, functions as a repressor of the gene expression of the phasin PhaP and of PhaR itself. We used a quartz crystal microbalance to investigate the binding behavior by which PhaR in Ralstonia eutropha H16 targets DNAs and amorphous poly[(R)-3-hydroxybutyrate] thin films. Binding rate constants, dissociation rate constants, and dissociation constants of the binding of PhaR to DNA and to amorphous poly[(R)-3-hydroxybutyrate] suggested that PhaR bind to both in a similar manner. On the basis of the binding rate constant values, we proposed that the phaP gene would be derepressed in harmony with the ratio of the concentration of the target DNA to the concentration of amorphous poly[(R)-3-hydroxybutyrate] at the start of poly[(R)-3-hydroxybutyrate] synthesis in R. eutropha H16.