Cargando…
Tracking the mechanical dynamics of human embryonic stem cell chromatin
BACKGROUND: A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES) cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-bas...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570407/ https://www.ncbi.nlm.nih.gov/pubmed/23259580 http://dx.doi.org/10.1186/1756-8935-5-20 |
_version_ | 1782259067482275840 |
---|---|
author | Hinde, Elizabeth Cardarelli, Francesco Chen, Aaron Khine, Michelle Gratton, Enrico |
author_facet | Hinde, Elizabeth Cardarelli, Francesco Chen, Aaron Khine, Michelle Gratton, Enrico |
author_sort | Hinde, Elizabeth |
collection | PubMed |
description | BACKGROUND: A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES) cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. RESULTS: We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs) are modulated spatiotemporally during differentiation into cardiomyocytes (CM). Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. CONCLUSIONS: We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method. |
format | Online Article Text |
id | pubmed-3570407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35704072013-02-13 Tracking the mechanical dynamics of human embryonic stem cell chromatin Hinde, Elizabeth Cardarelli, Francesco Chen, Aaron Khine, Michelle Gratton, Enrico Epigenetics Chromatin Methodology BACKGROUND: A plastic chromatin structure has emerged as fundamental to the self-renewal and pluripotent capacity of embryonic stem (ES) cells. Direct measurement of chromatin dynamics in vivo is, however, challenging as high spatiotemporal resolution is required. Here, we present a new tracking-based method which can detect high frequency chromatin movement and quantify the mechanical dynamics of chromatin in live cells. RESULTS: We use this method to study how the mechanical properties of chromatin movement in human embryonic stem cells (hESCs) are modulated spatiotemporally during differentiation into cardiomyocytes (CM). Notably, we find that pluripotency is associated with a highly discrete, energy-dependent frequency of chromatin movement that we refer to as a ‘breathing’ state. We find that this ‘breathing’ state is strictly dependent on the metabolic state of the cell and is progressively silenced during differentiation. CONCLUSIONS: We thus propose that the measured chromatin high frequency movements in hESCs may represent a hallmark of pluripotency and serve as a mechanism to maintain the genome in a transcriptionally accessible state. This is a result that could not have been observed without the high spatial and temporal resolution provided by this novel tracking method. BioMed Central 2012-12-21 /pmc/articles/PMC3570407/ /pubmed/23259580 http://dx.doi.org/10.1186/1756-8935-5-20 Text en Copyright ©2012 Hinde et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methodology Hinde, Elizabeth Cardarelli, Francesco Chen, Aaron Khine, Michelle Gratton, Enrico Tracking the mechanical dynamics of human embryonic stem cell chromatin |
title | Tracking the mechanical dynamics of human embryonic stem cell chromatin |
title_full | Tracking the mechanical dynamics of human embryonic stem cell chromatin |
title_fullStr | Tracking the mechanical dynamics of human embryonic stem cell chromatin |
title_full_unstemmed | Tracking the mechanical dynamics of human embryonic stem cell chromatin |
title_short | Tracking the mechanical dynamics of human embryonic stem cell chromatin |
title_sort | tracking the mechanical dynamics of human embryonic stem cell chromatin |
topic | Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570407/ https://www.ncbi.nlm.nih.gov/pubmed/23259580 http://dx.doi.org/10.1186/1756-8935-5-20 |
work_keys_str_mv | AT hindeelizabeth trackingthemechanicaldynamicsofhumanembryonicstemcellchromatin AT cardarellifrancesco trackingthemechanicaldynamicsofhumanembryonicstemcellchromatin AT chenaaron trackingthemechanicaldynamicsofhumanembryonicstemcellchromatin AT khinemichelle trackingthemechanicaldynamicsofhumanembryonicstemcellchromatin AT grattonenrico trackingthemechanicaldynamicsofhumanembryonicstemcellchromatin |