Cargando…

An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation

We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This all...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Runchun, Cohen, Gregory, Stiefel, Klaus M., Hamilton, Tara Julia, Tapson, Jonathan, van Schaik, André
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570898/
https://www.ncbi.nlm.nih.gov/pubmed/23408739
http://dx.doi.org/10.3389/fnins.2013.00014
_version_ 1782259117492011008
author Wang, Runchun
Cohen, Gregory
Stiefel, Klaus M.
Hamilton, Tara Julia
Tapson, Jonathan
van Schaik, André
author_facet Wang, Runchun
Cohen, Gregory
Stiefel, Klaus M.
Hamilton, Tara Julia
Tapson, Jonathan
van Schaik, André
author_sort Wang, Runchun
collection PubMed
description We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes.
format Online
Article
Text
id pubmed-3570898
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-35708982013-02-13 An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation Wang, Runchun Cohen, Gregory Stiefel, Klaus M. Hamilton, Tara Julia Tapson, Jonathan van Schaik, André Front Neurosci Neuroscience We present an FPGA implementation of a re-configurable, polychronous spiking neural network with a large capacity for spatial-temporal patterns. The proposed neural network generates delay paths de novo, so that only connections that actually appear in the training patterns will be created. This allows the proposed network to use all the axons (variables) to store information. Spike Timing Dependent Delay Plasticity is used to fine-tune and add dynamics to the network. We use a time multiplexing approach allowing us to achieve 4096 (4k) neurons and up to 1.15 million programmable delay axons on a Virtex 6 FPGA. Test results show that the proposed neural network is capable of successfully recalling more than 95% of all spikes for 96% of the stored patterns. The tests also show that the neural network is robust to noise from random input spikes. Frontiers Media S.A. 2013-02-13 /pmc/articles/PMC3570898/ /pubmed/23408739 http://dx.doi.org/10.3389/fnins.2013.00014 Text en Copyright © 2013 Wang, Cohen, Stiefel, Hamilton, Tapson and van Schaik. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
spellingShingle Neuroscience
Wang, Runchun
Cohen, Gregory
Stiefel, Klaus M.
Hamilton, Tara Julia
Tapson, Jonathan
van Schaik, André
An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation
title An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation
title_full An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation
title_fullStr An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation
title_full_unstemmed An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation
title_short An FPGA Implementation of a Polychronous Spiking Neural Network with Delay Adaptation
title_sort fpga implementation of a polychronous spiking neural network with delay adaptation
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570898/
https://www.ncbi.nlm.nih.gov/pubmed/23408739
http://dx.doi.org/10.3389/fnins.2013.00014
work_keys_str_mv AT wangrunchun anfpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT cohengregory anfpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT stiefelklausm anfpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT hamiltontarajulia anfpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT tapsonjonathan anfpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT vanschaikandre anfpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT wangrunchun fpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT cohengregory fpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT stiefelklausm fpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT hamiltontarajulia fpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT tapsonjonathan fpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation
AT vanschaikandre fpgaimplementationofapolychronousspikingneuralnetworkwithdelayadaptation