Cargando…

The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics

[Image: see text] The sequence dependence of RNA energetics is important for predicting RNA structure. Hairpins with C(n) loops are consistently less stable than hairpins with other loops, which suggests the structure of C(n) regions could be unusual in the “unfolded” state. For example, previous nu...

Descripción completa

Detalles Bibliográficos
Autores principales: Tubbs, Jason D., Condon, David E., Kennedy, Scott D., Hauser, Melanie, Bevilacqua, Philip C., Turner, Douglas H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2013
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571207/
https://www.ncbi.nlm.nih.gov/pubmed/23286901
http://dx.doi.org/10.1021/bi3010347
_version_ 1782259153911152640
author Tubbs, Jason D.
Condon, David E.
Kennedy, Scott D.
Hauser, Melanie
Bevilacqua, Philip C.
Turner, Douglas H.
author_facet Tubbs, Jason D.
Condon, David E.
Kennedy, Scott D.
Hauser, Melanie
Bevilacqua, Philip C.
Turner, Douglas H.
author_sort Tubbs, Jason D.
collection PubMed
description [Image: see text] The sequence dependence of RNA energetics is important for predicting RNA structure. Hairpins with C(n) loops are consistently less stable than hairpins with other loops, which suggests the structure of C(n) regions could be unusual in the “unfolded” state. For example, previous nuclear magnetic resonance (NMR) evidence suggested that polycytidylic acid forms a left-handed helix. In this study, UV melting experiments show that the hairpin formed by r(5′GGACCCCCGUCC) is less stable than r(5′GGACUUUUGUCC). NMR spectra for single-stranded C(4) oligonucleotide, mimicking the unfolded hairpin loop, are consistent with a right-handed A-form-like helix. Comparisons between NMR spectra and molecular dynamics (MD) simulations suggest that recent reparametrizations, parm99χ_YIL and parm99TOR, of the AMBER parm99 force field improve the agreement between structural features for C(4) determined by NMR and predicted by MD. Evidently, the force field revisions to parm99 improve the modeling of RNA energetics and therefore structure.
format Online
Article
Text
id pubmed-3571207
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-35712072013-02-14 The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics Tubbs, Jason D. Condon, David E. Kennedy, Scott D. Hauser, Melanie Bevilacqua, Philip C. Turner, Douglas H. Biochemistry [Image: see text] The sequence dependence of RNA energetics is important for predicting RNA structure. Hairpins with C(n) loops are consistently less stable than hairpins with other loops, which suggests the structure of C(n) regions could be unusual in the “unfolded” state. For example, previous nuclear magnetic resonance (NMR) evidence suggested that polycytidylic acid forms a left-handed helix. In this study, UV melting experiments show that the hairpin formed by r(5′GGACCCCCGUCC) is less stable than r(5′GGACUUUUGUCC). NMR spectra for single-stranded C(4) oligonucleotide, mimicking the unfolded hairpin loop, are consistent with a right-handed A-form-like helix. Comparisons between NMR spectra and molecular dynamics (MD) simulations suggest that recent reparametrizations, parm99χ_YIL and parm99TOR, of the AMBER parm99 force field improve the agreement between structural features for C(4) determined by NMR and predicted by MD. Evidently, the force field revisions to parm99 improve the modeling of RNA energetics and therefore structure. American Chemical Society 2013-01-03 2013-02-12 /pmc/articles/PMC3571207/ /pubmed/23286901 http://dx.doi.org/10.1021/bi3010347 Text en Copyright © 2013 American Chemical Society http://pubs.acs.org This is an open-access article distributed under the ACS AuthorChoice Terms & Conditions. Any use of this article, must conform to the terms of that license which are available at http://pubs.acs.org.
spellingShingle Tubbs, Jason D.
Condon, David E.
Kennedy, Scott D.
Hauser, Melanie
Bevilacqua, Philip C.
Turner, Douglas H.
The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics
title The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics
title_full The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics
title_fullStr The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics
title_full_unstemmed The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics
title_short The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural Predictions from Molecular Dynamics
title_sort nuclear magnetic resonance of cccc rna reveals a right-handed helix, and revised parameters for amber force field torsions improve structural predictions from molecular dynamics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571207/
https://www.ncbi.nlm.nih.gov/pubmed/23286901
http://dx.doi.org/10.1021/bi3010347
work_keys_str_mv AT tubbsjasond thenuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT condondavide thenuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT kennedyscottd thenuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT hausermelanie thenuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT bevilacquaphilipc thenuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT turnerdouglash thenuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT tubbsjasond nuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT condondavide nuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT kennedyscottd nuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT hausermelanie nuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT bevilacquaphilipc nuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics
AT turnerdouglash nuclearmagneticresonanceofccccrnarevealsarighthandedhelixandrevisedparametersforamberforcefieldtorsionsimprovestructuralpredictionsfrommoleculardynamics