Cargando…
Classification of Odorants in the Vapor Phase Using Composite Features for a Portable E-Nose System
We present an effective portable e-nose system that performs well even in noisy environments. Considering the characteristics of the e-nose data, we use an image covariance matrix-based method for extracting discriminant features for vapor classification. To construct composite vectors, primitive va...
Autores principales: | Choi, Sang-Il, Jeong, Gu-Min, Kim, Chunghoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571777/ https://www.ncbi.nlm.nih.gov/pubmed/23443373 http://dx.doi.org/10.3390/s121216182 |
Ejemplares similares
-
Data Refinement and Channel Selection for a Portable E-Nose System by the Use of Feature Feedback
por: Choi, Sang-Il, et al.
Publicado: (2010) -
Development of a Portable Electronic Nose System for the Detection and Classification of Fruity Odors
por: Tang, Kea-Tiong, et al.
Publicado: (2010) -
A Discriminant Distance Based Composite Vector Selection Method for Odor Classification
por: Choi, Sang-Il, et al.
Publicado: (2014) -
Pseudo Optimization of E-Nose Data Using Region Selection with Feature Feedback Based on Regularized Linear Discriminant Analysis
por: Jeong, Gu-Min, et al.
Publicado: (2014) -
Detection and Classification of Human Body Odor Using an Electronic Nose
por: Wongchoosuk, Chatchawal, et al.
Publicado: (2009)