Cargando…

Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review

More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data...

Descripción completa

Detalles Bibliográficos
Autores principales: Montzka, Carsten, Pauwels, Valentijn R. N., Franssen, Harrie-Jan Hendricks, Han, Xujun, Vereecken, Harry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571784/
https://www.ncbi.nlm.nih.gov/pubmed/23443380
http://dx.doi.org/10.3390/s121216291
_version_ 1782259203754164224
author Montzka, Carsten
Pauwels, Valentijn R. N.
Franssen, Harrie-Jan Hendricks
Han, Xujun
Vereecken, Harry
author_facet Montzka, Carsten
Pauwels, Valentijn R. N.
Franssen, Harrie-Jan Hendricks
Han, Xujun
Vereecken, Harry
author_sort Montzka, Carsten
collection PubMed
description More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a simulation model. Existing approaches can be used to simultaneously update several model states and model parameters if applicable. In other words, the basic principles for multivariate data assimilation are already available. We argue that a better understanding of the measurement errors for different observation types, improved estimates of observation bias and improved multiscale assimilation methods for data which scale nonlinearly is important to properly weight them in multiscale multivariate data assimilation. In this context, improved cross-validation of different data types, and increased ground truth verification of remote sensing products are required.
format Online
Article
Text
id pubmed-3571784
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-35717842013-02-19 Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review Montzka, Carsten Pauwels, Valentijn R. N. Franssen, Harrie-Jan Hendricks Han, Xujun Vereecken, Harry Sensors (Basel) Review More and more terrestrial observational networks are being established to monitor climatic, hydrological and land-use changes in different regions of the World. In these networks, time series of states and fluxes are recorded in an automated manner, often with a high temporal resolution. These data are important for the understanding of water, energy, and/or matter fluxes, as well as their biological and physical drivers and interactions with and within the terrestrial system. Similarly, the number and accuracy of variables, which can be observed by spaceborne sensors, are increasing. Data assimilation (DA) methods utilize these observations in terrestrial models in order to increase process knowledge as well as to improve forecasts for the system being studied. The widely implemented automation in observing environmental states and fluxes makes an operational computation more and more feasible, and it opens the perspective of short-time forecasts of the state of terrestrial systems. In this paper, we review the state of the art with respect to DA focusing on the joint assimilation of observational data precedents from different spatial scales and different data types. An introduction is given to different DA methods, such as the Ensemble Kalman Filter (EnKF), Particle Filter (PF) and variational methods (3/4D-VAR). In this review, we distinguish between four major DA approaches: (1) univariate single-scale DA (UVSS), which is the approach used in the majority of published DA applications, (2) univariate multiscale DA (UVMS) referring to a methodology which acknowledges that at least some of the assimilated data are measured at a different scale than the computational grid scale, (3) multivariate single-scale DA (MVSS) dealing with the assimilation of at least two different data types, and (4) combined multivariate multiscale DA (MVMS). Finally, we conclude with a discussion on the advantages and disadvantages of the assimilation of multiple data types in a simulation model. Existing approaches can be used to simultaneously update several model states and model parameters if applicable. In other words, the basic principles for multivariate data assimilation are already available. We argue that a better understanding of the measurement errors for different observation types, improved estimates of observation bias and improved multiscale assimilation methods for data which scale nonlinearly is important to properly weight them in multiscale multivariate data assimilation. In this context, improved cross-validation of different data types, and increased ground truth verification of remote sensing products are required. Molecular Diversity Preservation International (MDPI) 2012-11-26 /pmc/articles/PMC3571784/ /pubmed/23443380 http://dx.doi.org/10.3390/s121216291 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Review
Montzka, Carsten
Pauwels, Valentijn R. N.
Franssen, Harrie-Jan Hendricks
Han, Xujun
Vereecken, Harry
Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review
title Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review
title_full Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review
title_fullStr Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review
title_full_unstemmed Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review
title_short Multivariate and Multiscale Data Assimilation in Terrestrial Systems: A Review
title_sort multivariate and multiscale data assimilation in terrestrial systems: a review
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571784/
https://www.ncbi.nlm.nih.gov/pubmed/23443380
http://dx.doi.org/10.3390/s121216291
work_keys_str_mv AT montzkacarsten multivariateandmultiscaledataassimilationinterrestrialsystemsareview
AT pauwelsvalentijnrn multivariateandmultiscaledataassimilationinterrestrialsystemsareview
AT franssenharriejanhendricks multivariateandmultiscaledataassimilationinterrestrialsystemsareview
AT hanxujun multivariateandmultiscaledataassimilationinterrestrialsystemsareview
AT vereeckenharry multivariateandmultiscaledataassimilationinterrestrialsystemsareview