Cargando…
Grapevine Yield and Leaf Area Estimation Using Supervised Classification Methodology on RGB Images Taken under Field Conditions
The aim of this research was to implement a methodology through the generation of a supervised classifier based on the Mahalanobis distance to characterize the grapevine canopy and assess leaf area and yield using RGB images. The method automatically processes sets of images, and calculates the area...
Autores principales: | Diago, Maria-Paz, Correa, Christian, Millán, Borja, Barreiro, Pilar, Valero, Constantino, Tardaguila, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571822/ https://www.ncbi.nlm.nih.gov/pubmed/23235443 http://dx.doi.org/10.3390/s121216988 |
Ejemplares similares
-
vitisFlower(®): Development and Testing of a Novel Android-Smartphone Application for Assessing the Number of Grapevine Flowers per Inflorescence Using Artificial Vision Techniques
por: Aquino, Arturo, et al.
Publicado: (2015) -
On-The-Go Hyperspectral Imaging Under Field Conditions and Machine Learning for the Classification of Grapevine Varieties
por: Gutiérrez, Salvador, et al.
Publicado: (2018) -
Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer
por: Gutiérrez, Salvador, et al.
Publicado: (2015) -
Solar ultraviolet radiation is necessary to enhance grapevine fruit ripening transcriptional and phenolic responses
por: Carbonell-Bejerano, Pablo, et al.
Publicado: (2014) -
A Non-Invasive Method Based on Computer Vision for Grapevine Cluster Compactness Assessment Using a Mobile Sensing Platform under Field Conditions
por: Palacios, Fernando, et al.
Publicado: (2019)