Cargando…
Multiscale analysis of slow-fast neuronal learning models with noise
This paper deals with the application of temporal averaging methods to recurrent networks of noisy neurons undergoing a slow and unsupervised modification of their connectivity matrix called learning. Three time-scales arise for these models: (i) the fast neuronal dynamics, (ii) the intermediate ext...
Autores principales: | Galtier, Mathieu, Wainrib, Gilles |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571918/ https://www.ncbi.nlm.nih.gov/pubmed/23174307 http://dx.doi.org/10.1186/2190-8567-2-13 |
Ejemplares similares
-
Identification and modelling of fast and slow I
(h) current components in vestibular ganglion neurons
por: Michel, Christophe B., et al.
Publicado: (2015) -
A fast Markovian method for modeling channel noise in neurons
por: Ankri, Norbert, et al.
Publicado: (2023) -
External control arm analysis: an evaluation of propensity score approaches, G-computation, and doubly debiased machine learning
por: Loiseau, Nicolas, et al.
Publicado: (2022) -
A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing
por: van Nifterick, Anne M., et al.
Publicado: (2022) -
Investigation of cavitation noise using Eulerian-Lagrangian multiscale modeling
por: Li, Linmin, et al.
Publicado: (2023)