Cargando…

A standardized bamboo leaf extract inhibits monocyte adhesion to endothelial cells by modulating vascular cell adhesion protein-1

Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Sunga, Park, Myoung Soo, Lee, Yu Ran, Lee, Young Chul, Kim, Tae Woo, Do, Seon-Gil, Kim, Dong Seon, Jeon, Byeong Hwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Nutrition Society and the Korean Society of Community Nutrition 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572229/
https://www.ncbi.nlm.nih.gov/pubmed/23422838
http://dx.doi.org/10.4162/nrp.2013.7.1.9
Descripción
Sumario:Bamboo leaves (Phyllostachys pubescens Mazel ex J. Houz (Poacea)) have a long history of food and medical applications in Asia, including Japan and Korea. They have been used as a traditional medicine for centuries. We investigated the mechanism of anti-inflammatory activity of a bamboo leaf extract (BLE) on tumor necrosis factor-alpha (TNF-α)-induced monocyte adhesion in human umbilical vein endothelial cells (HUVECs). Exposure of HUVECs to BLE did not inhibit cell viability or cause morphological changes at concentrations ranging from 1 µg/ml to 1 mg/ml. Treatment with 0.1 mg/ml BLE caused 63% inhibition of monocyte adhesion in TNF-α-activated HUVECs, which was associated with 38.4% suppression of vascular cell adhesion molecule-1 expression. Furthermore, TNF-α-induced reactive oxygen species generation was decreased to 47.9% in BLE treated TNF-α-activated HUVECs. BLE (0.05 mg/ml) also caused about 50% inhibition of interleukin-6 secretion from lipopolysaccharide-stimulated monocyte. The results indicate that BLE may be clinically useful as an anti-inflammatory or anti-oxidant for human cardiovascular disease including atherosclerosis.