Cargando…
La Niña forces unprecedented Leeuwin Current warming in 2011
Unprecedented warm sea surface temperature (SST) anomalies were observed off the west coast of Australia in February–March 2011. Peak SST during a 2-week period were 5°C warmer than normal, causing widespread coral bleaching and fish kills. Understanding the climatic drivers of this extreme event, w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572450/ https://www.ncbi.nlm.nih.gov/pubmed/23429502 http://dx.doi.org/10.1038/srep01277 |
Sumario: | Unprecedented warm sea surface temperature (SST) anomalies were observed off the west coast of Australia in February–March 2011. Peak SST during a 2-week period were 5°C warmer than normal, causing widespread coral bleaching and fish kills. Understanding the climatic drivers of this extreme event, which we dub “Ningaloo Niño”, is crucial for predicting similar events under the influence of global warming. Here we use observational data and numerical models to demonstrate that the extreme warming was mostly driven by an unseasonable surge of the poleward-flowing Leeuwin Current in austral summer, which transported anomalously warm water southward along the coast. The unusual intensification of the Leeuwin Current was forced remotely by oceanic and atmospheric teleconnections associated with the extraordinary 2010–2011 La Niña. The amplitude of the warming was boosted by both multi-decadal trends in the Pacific toward more La Niña-like conditions and intraseasonal variations in the Indian Ocean. |
---|