Cargando…
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
OBJECTIVE: Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the abi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573031/ https://www.ncbi.nlm.nih.gov/pubmed/23457444 http://dx.doi.org/10.1371/journal.pone.0053513 |
_version_ | 1782259389168615424 |
---|---|
author | Halder, Sebastian Hammer, Eva Maria Kleih, Sonja Claudia Bogdan, Martin Rosenstiel, Wolfgang Birbaumer, Niels Kübler, Andrea |
author_facet | Halder, Sebastian Hammer, Eva Maria Kleih, Sonja Claudia Bogdan, Martin Rosenstiel, Wolfgang Birbaumer, Niels Kübler, Andrea |
author_sort | Halder, Sebastian |
collection | PubMed |
description | OBJECTIVE: Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. METHODS: Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. RESULTS: Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. CONCLUSIONS: Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. SIGNIFICANCE: Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. |
format | Online Article Text |
id | pubmed-3573031 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35730312013-03-01 Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude Halder, Sebastian Hammer, Eva Maria Kleih, Sonja Claudia Bogdan, Martin Rosenstiel, Wolfgang Birbaumer, Niels Kübler, Andrea PLoS One Research Article OBJECTIVE: Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball. METHODS: Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude. RESULTS: Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy. CONCLUSIONS: Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection. SIGNIFICANCE: Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population. Public Library of Science 2013-02-14 /pmc/articles/PMC3573031/ /pubmed/23457444 http://dx.doi.org/10.1371/journal.pone.0053513 Text en © 2013 Halder et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Halder, Sebastian Hammer, Eva Maria Kleih, Sonja Claudia Bogdan, Martin Rosenstiel, Wolfgang Birbaumer, Niels Kübler, Andrea Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude |
title | Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude |
title_full | Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude |
title_fullStr | Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude |
title_full_unstemmed | Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude |
title_short | Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude |
title_sort | prediction of auditory and visual p300 brain-computer interface aptitude |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573031/ https://www.ncbi.nlm.nih.gov/pubmed/23457444 http://dx.doi.org/10.1371/journal.pone.0053513 |
work_keys_str_mv | AT haldersebastian predictionofauditoryandvisualp300braincomputerinterfaceaptitude AT hammerevamaria predictionofauditoryandvisualp300braincomputerinterfaceaptitude AT kleihsonjaclaudia predictionofauditoryandvisualp300braincomputerinterfaceaptitude AT bogdanmartin predictionofauditoryandvisualp300braincomputerinterfaceaptitude AT rosenstielwolfgang predictionofauditoryandvisualp300braincomputerinterfaceaptitude AT birbaumerniels predictionofauditoryandvisualp300braincomputerinterfaceaptitude AT kublerandrea predictionofauditoryandvisualp300braincomputerinterfaceaptitude |