Cargando…
Prediction of Auditory and Visual P300 Brain-Computer Interface Aptitude
OBJECTIVE: Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the abi...
Autores principales: | Halder, Sebastian, Hammer, Eva Maria, Kleih, Sonja Claudia, Bogdan, Martin, Rosenstiel, Wolfgang, Birbaumer, Niels, Kübler, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573031/ https://www.ncbi.nlm.nih.gov/pubmed/23457444 http://dx.doi.org/10.1371/journal.pone.0053513 |
Ejemplares similares
-
Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance
por: Hammer, Eva M., et al.
Publicado: (2018) -
Prediction of brain-computer interface aptitude from individual brain structure
por: Halder, S., et al.
Publicado: (2013) -
Prediction of P300 BCI Aptitude in Severe Motor Impairment
por: Halder, Sebastian, et al.
Publicado: (2013) -
Online Artifact Removal for Brain-Computer Interfaces Using Support Vector Machines and Blind Source Separation
por: Halder, Sebastian, et al.
Publicado: (2007) -
Stimulus modality influences session-to-session transfer of training effects in auditory and tactile streaming-based P300 brain–computer interfaces
por: Ziebell, P., et al.
Publicado: (2020)