Cargando…
Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia
Schwann cells (SCs) play an important role in the development, function and regeneration of peripheral nerves. They can enhance both peripheral and central nerve regeneration by providing a supportive environment for neurite outgrowth through the release of neurotrophic factors. However, use of prim...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573738/ https://www.ncbi.nlm.nih.gov/pubmed/22684116 http://dx.doi.org/10.3892/ijmm.2012.1016 |
_version_ | 1782259492021338112 |
---|---|
author | JIANG, HUAJUN QU, WEI HAN, FENG LIU, DAZHUANG ZHANG, WEIGUO |
author_facet | JIANG, HUAJUN QU, WEI HAN, FENG LIU, DAZHUANG ZHANG, WEIGUO |
author_sort | JIANG, HUAJUN |
collection | PubMed |
description | Schwann cells (SCs) play an important role in the development, function and regeneration of peripheral nerves. They can enhance both peripheral and central nerve regeneration by providing a supportive environment for neurite outgrowth through the release of neurotrophic factors. However, use of primary SCs for in vitro models is limited because these cells are difficult to prepare and maintain in high yield and purity under common cell culture conditions. Human telomerase reverse transcriptase (hTERT) expression induces immortalization of various cell types without substantial alterations of their phenotypes. Therefore, in this study we transfected SCs with hTERT to establish a reliable cell source and observed the effect of hTERT on SCs. In order to accomplish this, SCs were isolated from rat embryo dorsal root ganglions, transfected with hTERT at early passage (passage 3). SCs passage 4, 8, 12 and 30 after transfection (hTERT-SCs) were used for immunocytochemistry, RT-PCR and western blotting. Results showed that all the early (passage 4) and late (passage 30) passage hTERT-SCs expressed hTERT mRNA and gained full telomerase activity. The transfection did not alter the mRNA expression of senescence-associated genes, such as p53 and p16. The expression of BDNF (brain-derived neurotrophic factor) was significantly decreased as cell passage increased, compared to the untransfected control. On the other hand, the expression of NGF (nerve growth factor) was elevated at early passages (passages 4 and 8) and decreased at late passages (12 and 30). These data indicate that the use of specific immortalization techniques can establish SC lines that retain characteristics of typical primary SCs, and different mechanisms responsible for regulating NGF and BDNF expression. This is the first report regarding the immortalization of SCs derived from rat embryo dorsal root ganglions. These cells are useful in studies investigating the cellular mechanisms and regenerative processes of SCs. |
format | Online Article Text |
id | pubmed-3573738 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-35737382013-02-21 Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia JIANG, HUAJUN QU, WEI HAN, FENG LIU, DAZHUANG ZHANG, WEIGUO Int J Mol Med Articles Schwann cells (SCs) play an important role in the development, function and regeneration of peripheral nerves. They can enhance both peripheral and central nerve regeneration by providing a supportive environment for neurite outgrowth through the release of neurotrophic factors. However, use of primary SCs for in vitro models is limited because these cells are difficult to prepare and maintain in high yield and purity under common cell culture conditions. Human telomerase reverse transcriptase (hTERT) expression induces immortalization of various cell types without substantial alterations of their phenotypes. Therefore, in this study we transfected SCs with hTERT to establish a reliable cell source and observed the effect of hTERT on SCs. In order to accomplish this, SCs were isolated from rat embryo dorsal root ganglions, transfected with hTERT at early passage (passage 3). SCs passage 4, 8, 12 and 30 after transfection (hTERT-SCs) were used for immunocytochemistry, RT-PCR and western blotting. Results showed that all the early (passage 4) and late (passage 30) passage hTERT-SCs expressed hTERT mRNA and gained full telomerase activity. The transfection did not alter the mRNA expression of senescence-associated genes, such as p53 and p16. The expression of BDNF (brain-derived neurotrophic factor) was significantly decreased as cell passage increased, compared to the untransfected control. On the other hand, the expression of NGF (nerve growth factor) was elevated at early passages (passages 4 and 8) and decreased at late passages (12 and 30). These data indicate that the use of specific immortalization techniques can establish SC lines that retain characteristics of typical primary SCs, and different mechanisms responsible for regulating NGF and BDNF expression. This is the first report regarding the immortalization of SCs derived from rat embryo dorsal root ganglions. These cells are useful in studies investigating the cellular mechanisms and regenerative processes of SCs. D.A. Spandidos 2012-09 2012-06-06 /pmc/articles/PMC3573738/ /pubmed/22684116 http://dx.doi.org/10.3892/ijmm.2012.1016 Text en Copyright © 2012, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles JIANG, HUAJUN QU, WEI HAN, FENG LIU, DAZHUANG ZHANG, WEIGUO Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia |
title | Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia |
title_full | Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia |
title_fullStr | Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia |
title_full_unstemmed | Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia |
title_short | Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia |
title_sort | establishment of immortalized schwann cells derived from rat embryo dorsal root ganglia |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573738/ https://www.ncbi.nlm.nih.gov/pubmed/22684116 http://dx.doi.org/10.3892/ijmm.2012.1016 |
work_keys_str_mv | AT jianghuajun establishmentofimmortalizedschwanncellsderivedfromratembryodorsalrootganglia AT quwei establishmentofimmortalizedschwanncellsderivedfromratembryodorsalrootganglia AT hanfeng establishmentofimmortalizedschwanncellsderivedfromratembryodorsalrootganglia AT liudazhuang establishmentofimmortalizedschwanncellsderivedfromratembryodorsalrootganglia AT zhangweiguo establishmentofimmortalizedschwanncellsderivedfromratembryodorsalrootganglia |