Cargando…

ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells

Advanced glycation end products (AGEs) play an important role in the proliferation of vascular smooth muscle cells (VSMCs) and accelerate atherosclerosis in diabetic patients. Autophagy, a life-sustaining process, is stimulated in atherosclerotic plaques by oxidized lipids, inflammation and metaboli...

Descripción completa

Detalles Bibliográficos
Autores principales: HU, PENGFEI, LAI, DONGWU, LU, PEILIN, GAO, JING, HE, HONG
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573741/
https://www.ncbi.nlm.nih.gov/pubmed/22293957
http://dx.doi.org/10.3892/ijmm.2012.891
Descripción
Sumario:Advanced glycation end products (AGEs) play an important role in the proliferation of vascular smooth muscle cells (VSMCs) and accelerate atherosclerosis in diabetic patients. Autophagy, a life-sustaining process, is stimulated in atherosclerotic plaques by oxidized lipids, inflammation and metabolic stress conditions. In our studies, we utilized MTT assays to show that autophagy is involved in AGE-induced proliferation of VSMCs. Furthermore, treatment with AGEs (100 μg/ml) could induce autophagy in a time- and dose-dependent manner in rat aortic VSMCs. These results were further substantiated by electron microscopy and immunofluorescence imaging. Treatment with AGEs activated ERK, JNK and p38/MAPK, but inhibited Akt. Pretreatment with an ERK inhibitor and an Akt activator inhibited AGE-induced autophagy, demonstrating that AGEs induce autophagy in VSMCs through the ERK and Akt signaling pathways. In addition, RNA interference of RAGE decreased autophagy, indicating that RAGE is pivotal in the process of AGE-induced autophagy. Therefore, AGE-induced autophagy contributes to the process of AGE-induced proliferation of VSMCs, which is related to atherosclerosis in diabetes.