Cargando…
Altered miRNA expression patterns in Tff2 knock-out mice correlate with cellular pathways of neoplastic development and caloric metabolism
The trefoil peptide family, consisting in mammals of three members namely TFF1, 2 and 3, plays a cytoprotective role in epithelial cells of various tissues, mainly in the digestive tract. Tff1, Tff2 or Tff3 knock-out mouse models developed various kinds of gastrointestinal impairment. microRNAs are...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573770/ https://www.ncbi.nlm.nih.gov/pubmed/22245972 http://dx.doi.org/10.3892/ijmm.2012.881 |
Sumario: | The trefoil peptide family, consisting in mammals of three members namely TFF1, 2 and 3, plays a cytoprotective role in epithelial cells of various tissues, mainly in the digestive tract. Tff1, Tff2 or Tff3 knock-out mouse models developed various kinds of gastrointestinal impairment. microRNAs are known to be novel gene regulators. We aimed to investigate the physiological role of such miRNAs in Tff2 knock-out mice. Whole miRNome profiling and in silico analysis were performed for Tff2-KO and WT mice. Our latest data explored the role of miRNAs in the regulatory cascades and molecular processes of Tff2(−/−) mice. As much as 6% of the Tff2-KO mice miRNome was significantly dys-regulated. Further in silico analysis suggests that the respective dys-regulated part of the miRNome is involved in human pathological processes, including pancreatic, colorectal and basal cell cancer. Additionally, the dys-regulated miRNome targets pathways involved in carbohydrate metabolism and adipocytokine signaling. The latter links deficient caloric maintenance in Tff2 and previous observation in Tff3-KO mice with miRNAs. In summary, our proof-of-concept study indicates that miRNAs may play an important role in the regulatory processes of the trefoil peptide family, especially in the regulation of cancer-related cascades. |
---|