Cargando…

Strength, Hardening, and Failure Observed by In Situ TEM Tensile Testing**

We present in situ transmission electron microscope tensile tests on focused ion beam fabricated single and multiple slip oriented Cu tensile samples with thicknesses in the range of 100–200 nm. Both crystal orientations fail by localized shear. While failure occurs after a few percent plastic strai...

Descripción completa

Detalles Bibliográficos
Autores principales: Kiener, Daniel, Kaufmann, Petra, Minor, Andrew M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3573867/
https://www.ncbi.nlm.nih.gov/pubmed/23447712
http://dx.doi.org/10.1002/adem.201200031
Descripción
Sumario:We present in situ transmission electron microscope tensile tests on focused ion beam fabricated single and multiple slip oriented Cu tensile samples with thicknesses in the range of 100–200 nm. Both crystal orientations fail by localized shear. While failure occurs after a few percent plastic strain and limited hardening in the single slip case, the multiple slip samples exhibit extended homogenous deformation and necking due to the activation of multiple dislocation sources in conjunction with significant hardening. The hardening behavior at 1% plastic strain is even more pronounced compared to compression samples of the same orientation due to the absence of sample taper and the interface to the compression platen. Moreover, we show for the first time that the strain rate sensitivity of such FIB prepared samples is an order of magnitude higher than that of bulk Cu.