Cargando…
Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway
Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the Bayesian network from microarray data directly. Although large numbers of Bayesian netwo...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574104/ https://www.ncbi.nlm.nih.gov/pubmed/23457624 http://dx.doi.org/10.1371/journal.pone.0056832 |
_version_ | 1782259566684143616 |
---|---|
author | Hu, Liangdong Wang, Limin |
author_facet | Hu, Liangdong Wang, Limin |
author_sort | Hu, Liangdong |
collection | PubMed |
description | Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the Bayesian network from microarray data directly. Although large numbers of Bayesian network learning algorithms have been developed, when applying them to learn Bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn Bayesian networks contain too few microarray data. In this paper, we propose a consensus Bayesian network which is constructed by combining Bayesian networks from relevant literatures and Bayesian networks learned from microarray data. It would have a higher accuracy than the Bayesian networks learned from one database. In the experiment, we validated the Bayesian network combination algorithm on several classic machine learning databases and used the consensus Bayesian network to model the [Image: see text]'s ROS pathway. |
format | Online Article Text |
id | pubmed-3574104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35741042013-03-01 Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway Hu, Liangdong Wang, Limin PLoS One Research Article Bayesian network is one of the most successful graph models for representing the reactive oxygen species regulatory pathway. With the increasing number of microarray measurements, it is possible to construct the Bayesian network from microarray data directly. Although large numbers of Bayesian network learning algorithms have been developed, when applying them to learn Bayesian networks from microarray data, the accuracies are low due to that the databases they used to learn Bayesian networks contain too few microarray data. In this paper, we propose a consensus Bayesian network which is constructed by combining Bayesian networks from relevant literatures and Bayesian networks learned from microarray data. It would have a higher accuracy than the Bayesian networks learned from one database. In the experiment, we validated the Bayesian network combination algorithm on several classic machine learning databases and used the consensus Bayesian network to model the [Image: see text]'s ROS pathway. Public Library of Science 2013-02-15 /pmc/articles/PMC3574104/ /pubmed/23457624 http://dx.doi.org/10.1371/journal.pone.0056832 Text en © 2013 Hu and Wang http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hu, Liangdong Wang, Limin Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway |
title | Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway |
title_full | Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway |
title_fullStr | Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway |
title_full_unstemmed | Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway |
title_short | Using Consensus Bayesian Network to Model the Reactive Oxygen Species Regulatory Pathway |
title_sort | using consensus bayesian network to model the reactive oxygen species regulatory pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574104/ https://www.ncbi.nlm.nih.gov/pubmed/23457624 http://dx.doi.org/10.1371/journal.pone.0056832 |
work_keys_str_mv | AT huliangdong usingconsensusbayesiannetworktomodelthereactiveoxygenspeciesregulatorypathway AT wanglimin usingconsensusbayesiannetworktomodelthereactiveoxygenspeciesregulatorypathway |