Cargando…
Rapid Identification and Drug Susceptibility Testing of Mycobacterium tuberculosis: Standard Operating Procedure for Non-Commercial Assays: Part 1: Microscopic Observation Drug Susceptibility Assay v2.4.12
Multidrug-resistant tuberculosis is an increasing public health concern in many parts of the world, especially in low-income countries, where most cases occur. Traditional mycobacteria culture and drug susceptibility testing (DST) is either time-consuming or expensive and for that reason uptake of t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574494/ https://www.ncbi.nlm.nih.gov/pubmed/23440310 http://dx.doi.org/10.4103/0974-2727.105592 |
Sumario: | Multidrug-resistant tuberculosis is an increasing public health concern in many parts of the world, especially in low-income countries, where most cases occur. Traditional mycobacteria culture and drug susceptibility testing (DST) is either time-consuming or expensive and for that reason uptake of these technologies has remained limited in many resource-constrained settings. However, several non-commercial culture and DST methods that do not require sophisticated infrastructure and techniques have been developed. One such method is the microscopic observation drug susceptibility assay (MODS). In this method microcolonies that form in the liquid culture medium after specimen inoculation to drug-free and drug-containing micro-wells are detected by visual observation with a simple inverted microscope. The identification and drug susceptibility results can be obtained in 7-15 days. This standard operating procedure document has been developed through the culture and DST subgroup of the STOP TB Partnership, New Diagnostic Working Group. It is intended for laboratories that would want to use or already using this rapid non-commercial method for culture identification and DST of Mycobacterium tuberculosis, notably in resource-constraint settings in Asia and Africa. |
---|