Cargando…
Seeding and Harvest: A Framework for Unsupervised Feature Selection Problems
Feature selection, also known as attribute selection, is the technique of selecting a subset of relevant features for building robust object models. It is becoming more and more important for large-scale sensors applications with AI capabilities. The core idea of this paper is derived from a straigh...
Autores principales: | Chen, Gang, Cai, Yuanli, Shi, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574678/ https://www.ncbi.nlm.nih.gov/pubmed/23271599 http://dx.doi.org/10.3390/s130100292 |
Ejemplares similares
-
Using the Kriging Correlation for unsupervised feature selection problems
por: Chua, Cheng-Han, et al.
Publicado: (2022) -
Group Based Unsupervised Feature Selection
por: Perera, Kushani, et al.
Publicado: (2020) -
Utility metric for unsupervised feature selection
por: Villa, Amalia, et al.
Publicado: (2021) -
ULMR: An Unsupervised Learning Framework for Mismatch Removal
por: Deng, Cailong, et al.
Publicado: (2022) -
Unsupervised feature selection based on incremental forward iterative Laplacian score
por: Jiang, Jiefang, et al.
Publicado: (2022)