Cargando…
Arrhythmia Identification with Two-Lead Electrocardiograms Using Artificial Neural Networks and Support Vector Machines for a Portable ECG Monitor System
An automatic configuration that can detect the position of R-waves, classify the normal sinus rhythm (NSR) and other four arrhythmic types from the continuous ECG signals obtained from the MIT-BIH arrhythmia database is proposed. In this configuration, a support vector machine (SVM) was used to dete...
Autores principales: | Liu, Shing-Hong, Cheng, Da-Chuan, Lin, Chih-Ming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574706/ https://www.ncbi.nlm.nih.gov/pubmed/23303379 http://dx.doi.org/10.3390/s130100813 |
Ejemplares similares
-
Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks
por: Badr, Malek, et al.
Publicado: (2022) -
Retracted: Detection of Heart Arrhythmia on Electrocardiogram using Artificial Neural Networks
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Machine Algorithm for Heartbeat Monitoring and Arrhythmia Detection Based on ECG Systems
por: Taloba, Ahmed I., et al.
Publicado: (2021) -
Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer
por: Gutiérrez, Salvador, et al.
Publicado: (2015) -
Textile Electrocardiogram (ECG) Electrodes for Wearable Health Monitoring
por: Arquilla, Katya, et al.
Publicado: (2020)