Cargando…
Hybrid Radar Emitter Recognition Based on Rough k-Means Classifier and Relevance Vector Machine
Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for recognizing radar emitter signals. In this paper, a hybrid recognition approach is presented that classifies radar emitter signals by exploiting the different separability of samples. The proposed a...
Autores principales: | Yang, Zhutian, Wu, Zhilu, Yin, Zhendong, Quan, Taifan, Sun, Hongjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574708/ https://www.ncbi.nlm.nih.gov/pubmed/23344380 http://dx.doi.org/10.3390/s130100848 |
Ejemplares similares
-
Robust Radar Emitter Recognition Based on the Three-Dimensional Distribution Feature and Transfer Learning
por: Yang, Zhutian, et al.
Publicado: (2016) -
Hybrid Mammogram Classification Using Rough Set and Fuzzy Classifier
por: Abu-Amara, Fadi, et al.
Publicado: (2009) -
Radar Emitter Signal Recognition Based on One-Dimensional Convolutional Neural Network with Attention Mechanism
por: Wu, Bin, et al.
Publicado: (2020) -
Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier
por: Amin, Morteza Moradi, et al.
Publicado: (2015) -
Recognition of Noisy Radar Emitter Signals Using a One-Dimensional Deep Residual Shrinkage Network
por: Zhang, Shengli, et al.
Publicado: (2021)