Cargando…
Clustering of time-course gene expression profiles using normal mixture models with autoregressive random effects
BACKGROUND: Time-course gene expression data such as yeast cell cycle data may be periodically expressed. To cluster such data, currently used Fourier series approximations of periodic gene expressions have been found not to be sufficiently adequate to model the complexity of the time-course data, p...
Autores principales: | Wang, Kui, Ng, Shu Kay, McLachlan, Geoffrey J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574839/ https://www.ncbi.nlm.nih.gov/pubmed/23151154 http://dx.doi.org/10.1186/1471-2105-13-300 |
Ejemplares similares
-
Partial mixture model for tight clustering of gene expression time-course
por: Yuan, Yinyin, et al.
Publicado: (2008) -
Detecting alpha spindle events in EEG time series using adaptive autoregressive models
por: Lawhern, Vernon, et al.
Publicado: (2013) -
A multivariate Poisson-log normal mixture model for clustering transcriptome sequencing data
por: Silva, Anjali, et al.
Publicado: (2019) -
Modeling gene expression regulatory networks with the sparse vector autoregressive model
por: Fujita, André, et al.
Publicado: (2007) -
Evaluating the effect of neighbourhood weight matrices on smoothing properties of Conditional Autoregressive (CAR) models
por: Earnest, Arul, et al.
Publicado: (2007)